Please wait a minute...
材料导报  2023, Vol. 37 Issue (9): 21060169-14    https://doi.org/10.11896/cldb.21060169
  无机非金属及其复合材料 |
电阻式柔性触觉传感器的研究进展
杨平安1, 刘中邦1, 李锐1,*, 屈正微1, 黄鑫1, 寿梦杰1, 杨健健2,*, 熊雨婷1
1 重庆邮电大学自动化学院,重庆 400065
2 中国人民解放军军事科学院防化研究院,武汉 710018
Recent Progress in the Development of Resistive Flexible Tactile Sensors
YANG Ping’an1, LIU Zhongbang1, LI Rui1,*, QU Zhengwei1, HUANG Xin1, SHOU Mengjie1, YANG Jianjian2,*, XIONG Yuting1
1 School of Automation, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
2 Institute of Chemical Defence, Academy of Military Sciences, Wuhan 710018, China
下载:  全 文 ( PDF ) ( 6422KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电阻式柔性触觉传感器具有柔韧灵敏、简单可靠、检测范围广、易于集成化等特点,在触觉感知、人机交互、医疗健康等传感应用领域占据着极其重要的地位,具有广阔的应用前景。随着电阻式柔性触觉传感器的发展,其制备技术和结构设计愈加精密成熟,3D打印技术的应用以及各类微结构的设计使传感器柔韧性和灵敏性得到了极大的提高。
   然而,目前高性能电阻式柔性触觉传感器的制作工艺仍旧十分复杂,严重限制了其批量生产的能力。再加上电阻式柔性触觉传感器不能实现剪裁拼接、高效低耗等功能,因而无法满足人们对其大面积覆盖和高密度触觉感知的期望。此外,就性能而言,电阻式柔性触觉传感器也难以实现高柔与高敏的兼顾效果,在传感上仍有局限性。为了解决这些难点,众多国际学者在柔性衬底材料、导电敏感材料的选择,以及敏感单元、阵列结构的设计上进行了大量的研究,搭建电子皮肤触觉感知系统。如今,电阻式柔性触觉传感器已经朝着微型化、集成化、自愈合、自清洁、生物适应、生物降解、神经接口控制等方向发展,并在多功能传感上取得了卓越成果。
   本文首先介绍了电阻式柔性触觉传感器的检测原理和性能指标,然后从材料选择、结构设计和性能优化方面概述了电阻式柔性触觉传感器的研究现状和关键技术,讨论了其在触觉感知、人机交互、医疗健康等领域的相关应用,最后指出了目前电阻式柔性触觉传感器研究所存在的技术难题,并对其未来发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨平安
刘中邦
李锐
屈正微
黄鑫
寿梦杰
杨健健
熊雨婷
关键词:  电阻式柔性触觉传感器  柔性衬底  敏感材料  结构设计  性能优化    
Abstract: Owing to the characteristics, such as flexibility, sensitivity, simplicity, reliability, wide detection range, and easy integration, resistive flexible tactile sensors, which have extended application prospects, play a significant role in sensing applications, such as tactile perception, human-computer interaction, and medical health. With the rapid development of resistive flexible tactile sensors, various aspects involving their design and preparation, such as microstructures and 3D printing technology, have become more sophisticated, which have greatly improved their flexibility and sensitivity.
Nevertheless, the manufacturing process of high-performance resistive flexible tactile sensors is still complicated, which severely limits their high-volume production. In addition, resistive flexible tactile sensors cannot achieve the expectations of a large-area coverage and high-density perception due to the limitations in scalability, high efficiency, and low consumption. Moreover, the simultaneous realization of high flexibility and sensitivity is difficult, resulting in further limitations to sensing. To combat these challenges, numerous international scholars, who expect to achieve the application of tactile sensing systems in electronic skin, have performed a lot of research on the selection of the flexible substrates and conductive materials, as well as on the design of sensitive units and array structures. Currently, resistive flexible tactile sensors are progressing toward the direction of miniaturization, integration, self-healing, self-cleaning, biological adaptation, biodegradation, and neural interface control;these have become excellent achievements in multifunctional sensing.
This paper introduces the principle and performance of resistive flexible tactile sensors and summarizes the research status and key technology in terms of material selection, structure design, and performance optimization. It also discusses the applications in the related fields, such as tac-tile perception, human-computer interaction and health care. Finally, the technical problems of resistive flexible tactile sensors are pointed out, and the scope for improvement in the future has been outlined.
Key words:  resistive flexible tactile sensor    flexible substrate    sensitive material    structural design    performance optimization
出版日期:  2023-05-10      发布日期:  2023-05-04
ZTFLH:  TP212  
基金资助: 国家自然科学基金(61901073;52075063);重庆市教委项目科学技术研究项目(重点项目) (KJZD-K201900602);重庆市科技局项目(自科)重庆市技术创新与应用示范专项(重点项目) (cstc2019jscx-fxydX0085)
通讯作者:  *李锐,重庆邮电大学二级教授,重庆市高校创新研究群体负责人、重庆市学术技术带头人、重庆市杰青、巴渝学者、重庆市高校优秀人才,中国仪器仪表学会实验仪器分委会理事、国家自然科学基金网评专家、科技部和重庆市科技局评审专家。长期从事智能检测与智能电磁防护结构、智能机器人等方向的研究,学术专长为基于多学科交叉的信息测控方法及其在智能制造领域中的应用。先后获重庆大学仪器科学与技术工学博士学位、美国内华达大学里诺分校博士后。近年来主持国家自然科学基金4项(含合作1项)、承担国家级省部级重点科研项目10余项,发表SCI/EI论文近百篇,授权国家发明专利20余项,在仪器环境自感知和装备结构自适应上获得理论突破和技术应用。lirui@cqupt.edu.cn
杨健健,博士,防化研究院工程师,2011年于后勤工程学院获学士学位,2014年于后勤工程学院获硕士学位,2018年于陆军勤务学院获博士学位。主要从事先进碳材料、智能材料研究,主持和参与国家科技支撑计划、装备发展基金、军委科技委基金等项目,发表学术论文30余篇,获国家专利5项。yangjianjiancq@163.com   
作者简介:  杨平安,重庆邮电大学自动化学院副教授、硕士研究生导师,重庆市巴渝青年学者。2012年本科毕业于重庆邮电大学电气工程与自动化专业,2017年在重庆大学仪器科学与技术专业取得博士学位。主要从事电磁屏蔽、柔性传感、软体机器人方面的研究工作。
引用本文:    
杨平安, 刘中邦, 李锐, 屈正微, 黄鑫, 寿梦杰, 杨健健, 熊雨婷. 电阻式柔性触觉传感器的研究进展[J]. 材料导报, 2023, 37(9): 21060169-14.
YANG Ping'an, LIU Zhongbang, LI Rui, QU Zhengwei, HUANG Xin, SHOU Mengjie, YANG Jianjian, XIONG Yuting. Recent Progress in the Development of Resistive Flexible Tactile Sensors. Materials Reports, 2023, 37(9): 21060169-14.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060169  或          http://www.mater-rep.com/CN/Y2023/V37/I9/21060169
1 Chi C, Sun X, Xue N, et al. Sensors, 2018, 18, 948.
2 Deng Liuliu, Deng Yong, Zhang Lei. Modern Manufacturing Engineering, 2018(2), 6(in Chinese).
邓刘刘, 邓勇, 张磊. 现代制造工程, 2018(2), 6.
3 Song Aiguo. Measurement & Control Technology, 2020, 39(5), 7(in Chinese).
宋爱国. 测控技术. 2020, 39(5), 7.
4 Liu K, Zhou Z, Yan X, et al. Polymers, 2019, 11, 1120.
5 Wang T, Wang R, Cheng Y, et al. ACS Applied Materials & Interfaces, 2016, 8(14), 9297.
6 Shi R, Lou Z, Chen S, et al. Science China Materials, 2018, 61, 1587.
7 Li R Z, Hu A, Zhang T, et al. ACS Applied Materials & Interfaces, 2014, 6, 21721.
8 Kawasetsu T, Horii T, Ishihara H, et al. IEEE Sensors Journal, 2018, 18, 5834.
9 Fan Y, Liao C, Liao G, et al. Smart Materials and Structures, 2017, 26, 075003.
10 Xu J, Pei L, Li J, et al. Composites Science and Technology, 2019, 183, 107820.
11 Zhu G, Yang W Q, Zhang T, et al. Nano Letters, 2014, 14, 3208.
12 Speeter T H. International Journal of Robotics Research, 1990, 9, 25.
13 Hara T, Horii E, An K N, et al. Journal of Hand Surgery-American Volume, 1992, 17, 339.
14 Takei K, Takahashi T, Ho J C, et al. Nature Materials, 2010, 9, 821.
15 Morteza Amjadi, Aekachan Pichitpajongkit, Sangjun Lee, et al. ACS Nano, 2014, 8, 10.
16 Yuan F, Wang S, Zhang S, et al. Journal of Materials Chemistry C, 2019, 7, 8412.
17 Tai Y, Chen T, Lubineau G. ACS Applied Materials & Interfaces, 2017, 9, 32184.
18 Kim J, Lee M, Shim H J, et al. Nature Communications, 2014, 5, 5747.
19 Jo H S, An S, Park C W, et al. ACS Applied Materials & Interfaces, 2019, 11, 40232.
20 Lee D, Lee H, Ahn Y, et al. Carbon, 2015, 81, 439.
21 Ding L, Xuan S, Feng J, et al. Composites Part A-Applied Science Manufacturing, 2017, 100, 97.
22 Huynh T P, Haick H. Advanced Materials, 2016, 28, 138.
23 Hou X Y, Guo C F. Acta Physica Sinica, 2020, 69(17),16(in Chinese).
侯星宇, 郭传飞. 物理学报, 2020, 69(17),16.
24 Pan L, Chortos A, Yu G, et al. Nature Communications, 2014, 5, 3002.
25 Rana V, Gangwar P, Meena J S, et al. Nanotechnology, 2020, 31, 385501.
26 Ding L, Xuan S, Pei L, et al. ACS Applied Materials & Interfaces, 2018, 10, 30774.
27 Ding L, Pei L, Xuan S, et al. Advanced Electronic Materials, 2020, 6, 1900653.
28 Pataniya P M, Sumesh C K, Tannarana M, et al. Nanotechnology, 2020, 31, 435503.
29 Wang H, Yang H, Zhang S, et al. Advanced Materials Technologies, 2019, 4, 1900147.
30 Zhou C, Yang Y, Sun N, et al. Nano Research, 2018, 11, 4313.
31 Cao M, Wang M, Li L, et al. Nano Energy, 2018, 50, 528.
32 Zhao S, Guo L, Li J, et al. Small, 2017, 13, 1700944.
33 Li J, Zhao S, Zeng X, et al. ACS Applied Materials & Interfaces, 2016, 8, 18954.
34 Tai Y L, Yang Z G. Journal of Materials Chemistry B, 2015, 3, 5436.
35 Wang S, Chen K, Wang M, et al. Journal of Materials Chemistry C, 2018, 6, 4737.
36 Yang G, Liu L, Wu Z. Smart Materials and Structures, 2019, 28, 065009.
37 Wang S, Xuan S, Liu M, et al. Soft Matter, 2017, 13, 2483.
38 Liu K, Yu J, Li Y, et al. Advanced Materials Technologies, 2019, 4, 1900475.
39 Pataniya P M, Sumesh C K, Tannarana M, et al. Nanotechnology, 2020, 31, 435503.
40 Yu Z, Ying W B, Pravarthana D, et al. Materials Today Physics, 2020, 14, 100219.
41 Lee D, Lee H, Ahn Y, et al. Carbon, 2015, 81, 439.
42 Amjadi M, Pichitpajongkit A, Lee S, et al. ACS Nano, 2014, 8, 5154.
43 Hu T, Xuan S, Ding L, et al. Materials & Design, 2018, 156, 528.
44 Han F, Li J, Zhao S, et al. Journal of Materials Chemistry C, 2017, 5, 10167.
45 Chen Z, Ren W C, Gao L B, et al. Nature Materials, 2011, 10, 6.
46 Xu H, Shen Z, Gu G. Science China-Technological Sciences, 2020, 63, 923.
47 Hou W, Sheng N, Zhang X, et al. Carbohydrate Polymers, 2019, 211, 322.
48 Wang X, Yue O, Liu X, et al. Chemical Engineering Journal, 2020, 392, 123672.
49 Hu T, Xuan S, Ding L, et al. Sensors and Actuators B-Chemical, 2020, 314, 128095.
50 Liu H C, Yang M K, Yuan X, et al. China Mechanical Engineering, 2021, 32(12), 1470(in Chinese).
刘会聪, 杨梦柯, 袁鑫, 等. 中国机械工程, 2021, 32(12), 1470.
51 Zhao J, Luo J, Zhou Z, et al. Sensors and Actuators A-Physical, 2021, 323, 112658.
52 Yin R, Yang S, Li Q, et al. Science Bulletin, 2020, 65, 899.
53 Lu Y, Qu X, Zhao W, et al. Research, 2020, 2020, 1.
54 Jaggers R W, Chen R, Bon S A F. Materials Horizons, 2016, 3, 41.
55 Xiang Y, Fang L, Wu F, et al. Advanced Materials Technologies, 2021, 6, 2001157.
56 Su B, Gong S, Ma Z, et al. Small, 2015, 11, 1886.
57 Wang H, Yang H, Zhang S, et al. Advanced Materials Technologies, 2019, 4, 1900147.
58 Pang C, Lee G Y, Kim T, et al. Nature Materials, 2012, 11, 795.
59 Ma Z, Wei A, Ma J, et al. Nanoscale, 2018, 10, 7116.
60 Pan L, Chortos A, Yu G, et al. Nature Communications, 2014, 5, 3002.
61 Zhao X F, Hang C Z, Wen X H, et al. ACS Applied Materials & Interfaces, 2020, 12, 14136.
62 Jiang L, Liu H, Cai H G, et al. China Mechanical Engineering, 2002, 13(24),4(in Chinese).
姜力, 刘宏, 蔡鹤皋, 等. 中国机械工程, 2002,13(24),4.
63 Leng M X, Song A G. Journal of Electrical &Electronic Education, 2017, 39(5), 4(in Chinese).
冷明鑫, 宋爱国. 电气电子教学学报, 2017, 39,(5)4.
64 Huang Y, Li H Y, Zhang Y G, et al. Journal of Hefei University of Technology, 2014, 37(2),5 (in Chinese).
黄英, 李浩洋, 张玉刚, 等. 合肥工业大学学报(自然科学版), 2014, 37(2),5.
65 Hu J F, Cai J Y, Zheng C H. Journal of Electronic Mea-surement and Instrumentation, 2016, 30(3),9(in Chinese).
胡俊峰, 蔡建阳, 郑昌虎. 电子测量与仪器学报, 2016, 30(3),9.
66 Zhou Y, She X Y, Liu X W, et al. Journal of Functional Materials, 2021, 52(8), 8068(in Chinese).
周杨, 佘小燕, 刘新蔚, 等. 功能材料, 2021, 52(8), 8068.
67 Zhang W, Ma H, Yang SX. Expert Systems with Applications, 2015, 42, 1039.
68 Song Y, Wang F, Zhang Z. Micromachines, 2018, 9, 236.
69 Zhang H, He R, Liu H, et al. Sensors and Actuators A-Physical, 2021, 322, 112611.
70 Liu P, Chen B L, Xiao F Y, et al. Journal of Chongqing University of Technology(Natural Science), 2021, 35(8), 90(in Chinese).
刘鹏, 陈宝亮, 肖飞云, 等. 重庆理工大学学报(自然科学), 2021, 35(8), 90.
71 Wu W G. Journal of Harbin Institute of Technology, 2015, 47(7), 1(in Chinese).
吴伟国. 哈尔滨工业大学学报, 2015, 47(7), 1.
72 Cai H G. Journal of Integration Technology, 2015(5), 4(in Chinese).
蔡鹤皋. 集成技术, 2015(5), 4.
73 Hammock M L, Chortos A, Tee B C K, et al. Advanced Materials, 2013, 25, 5997.
74 Xu S, Zhang Y, Jia L, et al. Science, 2014, 344, 70.
75 Zhao J. Aeronautical Manufacturing Technology, 2012(12), 19(in Chinese).
赵杰. 航空制造技术, 2012(12), 19.
76 Liu X J, Yu J J, Wang G B, et al. Bulletin of National Science Foundation of China, 2016, 30(5), 7(in Chinese).
刘辛军, 于靖军, 王国彪, 等. 中国科学基金, 2016, 30(5), 7.
77 Wang T M, Chen D S, Tao Y, et al. Science & Technology Review, 2015, 33(21), 16(in Chinese).
王田苗, 陈殿生, 陶永, 等. 科技导报, 2015, 33(21), 16.
78 Qiao H, Yin P J, Li R, et al. Bulletin of Chinese Academy of Sciences, 2015, 30(6), 10(in Chinese).
乔红, 尹沛劼, 李睿, 等. 中国科学院院刊, 2015, 30(6), 10.
79 Qu D K. Science & Technology Association Forum, 2015( 12), 3(in Chinese).
曲道奎. 科协论坛, 2015(12), 3.
80 Muth J T, Vogt D M, Truby R L, et al. Advanced Materials, 2014, 26, 6307.
81 Pu J, Li L J, Takenobu T. Physical Chemistry Chemical Physics, 2014, 16, 14996.
82 Zucca A, Yamagishi K, Fujie T, et al. Journal of Materials Chemistry C, 2015, 3, 6539.
83 Xu F, Zhu Y. Advanced Materials, 2012, 24, 5117.
84 Chang H, Kim S, Jin S, et al. ACS Applied Materials & Interfaces, 2018, 10, 1067.
85 Li Y Q, Zhu W B, Yu X G, et al. ACS Applied Materials & Interfaces, 2016, 8, 33189.
[1] 杜益嘉, 王盼, 肖诚禹, 唐道远, 徐建明, 周涵. 基于外场调控的智能热控超材料[J]. 材料导报, 2022, 36(2): 20110075-6.
[2] 于鸿莉, 杨宏昊, 马张博, 张原硕, 杨雯, 李永堂. 铁素体合金表面复合尖晶石涂层的研究进展[J]. 材料导报, 2022, 36(17): 20090087-8.
[3] 姚诗言, 曾立艳, 刘军. 高性能锂金属电池负极结构设计及界面强化研究进展[J]. 材料导报, 2022, 36(16): 21010216-11.
[4] 雷鹏, 鲍艳. 基于MXene柔性压阻传感器研究进展[J]. 材料导报, 2022, 36(14): 20040214-11.
[5] 贾梦伟, 张婕, 周顺风, 杨云鹏, 卢立新. 环境响应水凝胶的非对称结构设计与智能仿生[J]. 材料导报, 2022, 36(12): 20100208-9.
[6] 张苗, 魏志祥, 常晶晶. 柔性锂硫电池电极材料的结构设计[J]. 材料导报, 2022, 36(11): 21010030-11.
[7] 刘子甄, 金欣, 王闻宇, 牛家嵘. 基于分子结构设计的高性能聚酰亚胺的研究进展[J]. 材料导报, 2021, 35(z2): 600-611.
[8] 曹忠亮, 郭登科, 林国军, 胡清明, 富宏亚. 碳纤维复合材料自动铺放关键技术的现状与发展趋势[J]. 材料导报, 2021, 35(21): 21185-21194.
[9] 马衍轩, 李梦瑶, 朱鹏飞, 徐亚茜, 于霞, 彭帅, 张鹏, 张颖锐, 王金华. 超高性能水泥基复合材料的多尺度设计与抗爆炸性能研究进展[J]. 材料导报, 2021, 35(17): 17190-17198.
[10] 张关印, 关清卿, 庙荣荣, 宁平, 何亮. 共价有机骨架材料的合成及应用[J]. 材料导报, 2021, 35(13): 13215-13226.
[11] 张庆, 刘呈坤, 毛雪, 吴月霞, 江志威, 赵丽, 洪洁. 压电纳米发电机材料选用和结构设计研究进展[J]. 材料导报, 2021, 35(11): 11066-11076.
[12] 杨智为, 周涵. 基于分形几何思路的超材料结构设计:综述[J]. 材料导报, 2020, 34(21): 21052-21060.
[13] 李法利,李晟斌,曹晋玮,刘宜伟,尚杰,李润伟. 弹性敏感材料与传感器件[J]. 材料导报, 2020, 34(1): 1059-1068.
[14] 刘建伟,王嘉楠,朱蕾,延卫. 柔性锂硫电池材料:综述[J]. 材料导报, 2020, 34(1): 1155-1168.
[15] 李寒, 孙志鹏, 贾殿赠. 柔性钛箔上生长的自支撑TiO2@NiCo2S4阵列复合材料用作高性能非对称超级电容器电极[J]. 材料导报, 2020, 34(1): 1187-1194.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed