Please wait a minute...
材料导报  2023, Vol. 37 Issue (S1): 23020009-12    https://doi.org/10.11896/cldb.23020009
  无机非金属及其复合材料 |
多孔炭基复合材料用作碱金属离子电池负极的研究进展
毛晓璇1, 冯柳2,*, 吴立清1, 辛伍红2, 牛金叶2
1 山东理工大学材料科学与工程学院,山东 淄博 255000
2 山东理工大学分析测试中心,山东 淄博 255000
Research Progress of Porous Carbon Matrix Composites Used as Anodes of Alkali Metal Ion Batteries
MAO Xiaoxuan1, FENG Liu2,*, WU Liqing1, XIN Wuhong2, NIU Jinye2
1 School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, Shandong, China
2 Analysis and Testing Center, Shandong University of Technology, Zibo 255000, Shandong, China
下载:  全 文 ( PDF ) ( 19786KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碱金属离子(Li+、Na+和K+为主)电池功率密度高,使用寿命长,可实现大规模、持续性的电能存储和释放,是极具前景的储能设备之一。现有大规模使用的商业石墨负极容量已经接近理论值,限制了电池的发展,开发和优化高性能负极材料是推进碱金属离子电池商业化发展的关键因素。多孔炭材料具有丰富的孔道结构、较大的比表面积和优异的导电性,用作碱金属离子电池负极可提升其导电能力和电化学性能,但仍存在容量偏低的问题。因此,多孔炭材料的改性策略被广泛研究,并取得了一系列重要突破。本文主要综述了多孔炭基复合材料在碱金属离子电池负极应用的最新研究进展,首先概述了多孔炭材料的合成方法,然后分别梳理了近年来多孔炭材料用作锂离子电池、钠离子电池及钾离子电池负极性能提升的三种改性策略(杂原子掺杂、与金属化合物复合、多元材料共复合/掺杂),最后对多孔炭基负极材料的应用挑战和前景进行了分析与展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
毛晓璇
冯柳
吴立清
辛伍红
牛金叶
关键词:  碱金属离子电池  负极  多孔炭  掺杂  复合    
Abstract: As one of the most promising energy storage devices, alkali metal ion batteries (Li+, Na+ and K+ as main ions) characterized by high power density and long service life, can realize large-scale, continuous storage and release of electric energy. However, the capacity of large-scale commercial graphite in service has approached the theoretical value, thus restricting the development of batteries. Therefore, it is particularly important to develop anode materials with high capacity, good stability, long cycle life, and excellent rate performance. Porous carbon materials, with abundant pore structure, large specific surface area and excellent electrical conductivity, can be used as the anode of alkali metal ion batte-ries to improve the conductivity and electrochemical stability of batteries, as long as the low capacity problem is solved. Accordingly, the modification strategies have been studied extensively, and a series of significant breakthroughs have been achieved. In this paper, the research progress on the application of porous carbon composite materials in lithium-ion batteries, sodium-ion batteries and potassium-ion batteries anode is reviewed. The synthesis methods of porous carbon materials are summarized at first, and then three modification strategies (doping heteroatom, compositing with metal compounds, and co-compositing/doping multi-materials) widely used in recent years are reviewed. Furthermore, the prospects of porous carbon on alkali metal ion batteries are prospected.
Key words:  alkali metal ion battery    anode    porous carbon    doping    composite
发布日期:  2023-09-06
ZTFLH:  TQ127.2  
  TM912  
基金资助: 国家自然科学基金(22002074);山东省自然科学基金青年基金(ZR2020QE145)
通讯作者:  *冯柳,山东理工大学分析测试中心教授、硕士研究生导师。2001年河北理工大学本科毕业,2004年兰州理工大学硕士研究生毕业,后到山东理工大学工作至今,2014年上海大学博士研究生毕业。主要从事能源材料,微纳米尺度材料的制备、结构与机理研究。获发明专利7项,发表论文30余篇。willow-feng@163.com   
作者简介:  毛晓璇,2021年6月于山东理工大学获得工学学士学位。现为山东理工大学材料科学与工程学院硕士研究生,在冯柳教授的指导下进行研究。目前主要研究方向为碱金属离子电池电极材料的改性及性能的提升。
引用本文:    
毛晓璇, 冯柳, 吴立清, 辛伍红, 牛金叶. 多孔炭基复合材料用作碱金属离子电池负极的研究进展[J]. 材料导报, 2023, 37(S1): 23020009-12.
MAO Xiaoxuan, FENG Liu, WU Liqing, XIN Wuhong, NIU Jinye. Research Progress of Porous Carbon Matrix Composites Used as Anodes of Alkali Metal Ion Batteries. Materials Reports, 2023, 37(S1): 23020009-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020009  或          http://www.mater-rep.com/CN/Y2023/V37/IS1/23020009
1 Yang W, Zhang X, Tan H Y, et al. Journal of Energy Chemistry, 2021, 55, 557.
2 Liu Z C, Mu H L, Li Y, et al. Progress in Chemistry, 2021, 33(11), 2002 (in Chinese).
刘志超, 穆洪亮, 李艳, 等. 化学进展, 2021, 33(11), 2002.
3 Liu X, Tao H, Tang C, et al. Chemical Engineering Science, 2022, 248, 117200.
4 Zhu H, Shiraz M H A, Liu L, et al. Applied Surface Science, 2022, 578, 151982.
5 Tian M, Ben L, Jin Z, et al. Electrochimica Acta, 2021, 396, 139224.
6 Du J, Ma J, Liu Z, et al. Materials Letters, 2022, 315, 131921.
7 Zhang J, Hou Z L, Zhang X, et al. International Journal of Hydrogen Energy, 2022, 47(7), 4766.
8 He X, Wang R, Yin H, et al. Applied Surface Science, 2022, 584, 152537.
9 Yan Y, Lu X, Li Y, et al. Journal of Alloys and Compounds, 2022, 899, 163342.
10 Wang X, Sun N, Dong X, et al. Surfaces and Interfaces, 2022, 29, 101814.
11 Wang X, Zhang Y, Chen H, et al. Journal of Alloys and Compounds, 2022, 897, 163029.
12 Zhang N, Liu E, Chen H, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628, 127265.
13 Phan N T, Thi G T, Tae K I. Chemical Engineering Journal, 2022, 437, 135292.
14 Ganesan V, Kim D H, Nam K H, et al. Composites Part B: Enginee-ring, 2022, 231, 109592.
15 Li Z, Zheng J, Xiao M, et al. Scripta Materialia, 2022, 211, 114500.
16 Wu S, Feng Y, Guo Z, et al. Ceramics International, 2021, 47(22), 31062.
17 Hu J, Xie Y, Zheng J, et al. Electrochimica Acta, 2022, 409, 139996.
18 Xu Z, Yang J, Hou S, et al. Chemical Engineering Journal, 2022, 438, 135540.
19 Wang Q, Lai Y, Liu F, et al. Transactions of Nonferrous Metals Society of China, 2021, 31(7), 2051.
20 Rodríguez-Reinoso F, Molina-Sabio M. Carbon, 1992, 30, 1111.
21 Contreras M, Páez C, Zubizarreta L, et al. Carbon, 2010, 48, 3157.
22 Kim D, Kil H, Nakabayashi K, et al. Carbon, 2017, 114, 98.
23 Prauchner M, Rodríguez-Reinoso F. Microporous and Mesoporous Mate-rials, 2012, 152, 163.
24 Yang K, Peng J, Srinivasakannan C, et al. Bioresource Technology, 2010, 6163.
25 Kercher A, Nagle D. Carbon, 2003, 41, 15.
26 Tian Y X, Xiao C, Yin J, et al. Chemistry Select, 2019, 4, 2314.
27 Wang C, Wu D, Wang H, et. al. Chemistry of Materials A, 2018, 6, 1244.
28 Chen Y, Ji S, Wang H, et al. International Journal of Hydrogen Energy, 2018, 43, 5124.
29 Xu Z, Zhou Y, Sun Z, et al. Chemosphere, 2020, 241, 125120.
30 Yun S I, Kim H, Kim W, et al. Carbon, 2019, 149, 637.
31 Zhang G, Ou X, Cui C, et al. Advanced Functional Materials, 2019, 29, 1806722.
32 Lv Y, Gan L, Liu M, et al. Journal of Power Sources, 2012, 209, 152.
33 Li J, Wang N, Tian J, et al. Advanced Functional Materials, 2018, 28, 1806153.
34 Wan L, Song P, Liu J, et al. Journal of Power Sources, 2019, 438, 227013.
35 Chen J, Wei H, Chen H, et al. Electrochim Acta, 2018, 271, 49.
36 Hwang H, Kim C H, Wee J H, et al. Applied Surface Science, 2019, 489, 708.
37 Qiu D, Guo N, Gao A, et al. Electrochim Acta, 2019, 294, 398.
38 Li Y, Liang Y, Hu H, et al. Carbon, 2019, 152, 120.
39 Yang W, Yang W, Kong L, et al. Carbon, 2018, 127, 557.
40 Qiu D, Guo N, Gao A. Electrochim Acta, 2019, 294, 398.
41 Chaiwat W, Hasegawa I, Kori J, et al. Industrial & Engineering Chemistry Research, 2008, 47, 5948.
42 Liang H W, Wei W, Wu Z S, et al. Journal of the American Chemical Society, 2013, 135, 16002.
43 Zhu C, Takata M, Aoki Y, et al. Chemical Engineering Science, 2018, 350, 278.
44 He S, Zhang C, Du C, et al. Journal of Power Sources, 2019, 434, 226701.
45 Fang Y, Lv Y, Che R, et al. Journal of the American Chemical Society, 2013, 135, 1524.
46 de Almeida F C, Zarbin A J G. Carbon, 2006, 44, 2869.
47 Moriguchi I, Ozono A, Mikuriya K, et al. Chemistry Letters, 1999, 28, 1171.
48 Tian H, Lin Z, Xu F, et al. Small, 2016, 12, 3155.
49 Tang J, Liu J, Li C, et al. Angewandte Chemie International Edition, 2015, 54, 588.
50 Lin X, Dong Y, Chen X, et al. Journal of Materials Chemistry A, 2021, 9, 6423.
51 Yu L, Wu H B, Lou X W D. Accounts of Chemical Research, 2017, 50, 293.
52 Zhu T, Zhou J, Li Z, et al. Journal of Materials Chemistry C, 2014, 2, 12545.
53 Xu F, Lai Y, Fu R, et al. Chemistry of Materials, A 2013, 1, 5001.
54 Serrano J M, Liu T Y, Khan A U, et al. Chemistry of Materials, 2019, 31, 8898.
55 Wang H, Min S, Ma C, et al. Nature Communications, 2017, 8, 13592.
56 Lu S Y, Jin M, Zhang Y, et al. Advanced Energy Materials, 2017, 8, 1602545.
57 Li L, Zhang J, Peng Z, et al. Advanced Materials, 2016, 28, 838.
58 Zhang Y, Zhang K, Jia K, et al. Materials Chemistry and Physics, 2020, 251, 123043.
59 Wan H, Hu X. Solid State Ionics, 2019, 341, 115030.
60 Ruan J, Yuan T, Pang Y, et al. ACS Applied Materials & Interfaces, 2017, 9(41), 36261.
61 Zhang Y, Li J, Gong Z, et al. Journal of Colloid and Interface Science, 2021, 587, 489.
62 Wan H, Shen X, Jiang H, et al. Energy, 2021, 231, 121102.
63 Mou H, Xin Y, Miao C, et al. Electrochimica Acta, 2021, 397, 139286.
64 Lu X, Chen Y, Tian Q, et al. Applied Surface Science, 2021, 537, 148052.
65 Wang Q, Lai Y, Liu F, et al. Transactions of Nonferrous Metals Society of China, 2021, 31(7), 2051.
66 Hsieh C C, Lin Y G, Chiang C L, et al. Ceramics International, 2020, 46(17), 26598.
67 Sun X, Gao J, Wang C, et al. Chemical Engineering Journal, 2020, 383, 123198.
68 Li H, Chen Z. Materials Letters, 2020, 269, 127648.
69 Qu Y, Guo M, Zeng F, et al. Solid State Ionics, 2019, 337, 170.
70 Ou J, Yang L, Zhang Z, et al. Microporous and Mesoporous Materials, 2017, 237, 23.
71 Wan H, Ju X, He T, et al. Journal of Alloys and Compounds, 2021, 863, 158078.
72 Zhou C, Wang D, Li A, et al. Chemical Engineering Journal, 2020, 380, 122457.
73 Li X, Sun X, Gao Z, et al. Applied Surface Science, 2018, 433, 713.
74 Narsimulu D, Kakarla A K, Shanthappa R, et al. Journal of Materials Research and Technology, 2022, 17, 3234.
75 Yu X, He Z, Liu C, et al. Journal of Alloys and Compounds, 2022, 901, 163618.
76 Chang Q, Jin Y, Jia M, et al. Journal of Colloid and Interface Science, 2020, 575, 61.
77 Zhao L, Yang H, He F, et al. Electrochimica Acta, 2021, 388, 138565.
78 Ma X, Xiao N, Xiao J, et al. Carbon, 2021, 179, 33.
79 Dou S, Xu J, Yang C, et al. Nano Energy, 2022, 93, 106903.
80 Ye J, Xia G, Yang X, et al. Journal of Alloys and Compounds, 2022, 891, 161951.
81 Yan Z, Huang Z, Yao Y, et al. Journal of Alloys and Compounds, 2021, 858, 158203.
82 Feng Q, Li T, Sui Y, et al. Journal of Alloys and Compounds, 2021, 884, 160923.
83 Xiong D, Li X, Bai Z, et al. ACS Applied Materials & Interfaces, 2017, 9(12), 10643.
84 Shan H, Li X, Cui Y, et al. Electrochimica Acta, 2016, 205, 188.
85 Lota G, Fic K, Frackowiak E. Energy & Environmental Science, 2011, 4(5), 1592.
86 Ge P, Hou H, Liu N, et al. Sustainable Energy & Fuels, 2017, 1(5), 1130.
87 Shin W H, Jeong H M, Kim B G, et al. Nano Letters, 2012, 12(5), 2283.
88 Yue X, Huang N, Jiang Z, et al. Carbon, 2018, 130, 574.
89 Hao M, Xiao N, Wang Y, et al. Fuel Processing Technology, 2018, 177, 328.
90 Yang W, Zhou J, Wang S, et al. Energy & Environmental Science, 2019, 12(5), 1605.
91 Sun Q, Li D, Cheng J, et al. Carbon, 2019, 155, 601.
92 Li D, Ren X, Ai Q, et al. Advanced Energy Materials, 2018, 8(34), 1802386.
93 Yang X, Zheng X, Yan Z, et al. International Journal of Hydrogen Energy, 2021, 46(33), 17267.
94 Ou J, Yang L, Zhang Z. Powder Technology, 2019, 344, 89.
95 Deng Q, Liu H, Zhou Y, et al. Journal of Electroanalytical Chemistry, 2021, 899, 115668.
96 Ma X, Ning G, Qi C, et al. ACS Applied Materials & Interfaces, 2014, 6(16), 14415.
97 Wang J, Yang Z, Pan F, et al. RSC Advances, 2015, 5(68), 55136.
98 Yang D S, Bhattacharjya D, Song M Y, et al. Carbon, 2014, 67, 736.
99 Zhu Y P, Liu Y, Liu Y P, et al. ChemCatChem, 2015, 7(18), 2903.
100 Li M, Feng N, Liu M, et al. Science Bulletin, 2018, 63(15), 982.
101 Liu Y, Zhang N, Liu X, et al. Energy Storage Materials, 2017, 9, 170.
102 Zhang C, Mahmood N, Yin H, et al. Advanced Materials, 2013, 25(35), 4932.
103 Quan B, Jin A, Ho Y S, et al. Advanced Science, 2018, 5(5), 1700880
104 Li Y, Ni B, Li X, et al. Nano-Micro Letters, 2019, 11(1), 60
105 Huang B, Zhang X, Qu Z, et al. Journal of Materials Chemistry A, 2022, 10, 682.
106 Ma Y, Zhang X, Liang Z, et al. Electrochimica Acta, 2020, 337, 135800.
107 Jin H, Feng X, Li J, et al. Angewandte Chemie International Edition, 2019, 58(8), 2397.
108 Zhang H, Lv X, Tian W, et al. Chemical Engineering Science, 2021, 234, 116453.
109 Ahmad N, Khan M, Zheng X, et al. Solid State Ionics, 2020, 356, 115455.
110 Yu H Y, Liang H J, Gu Z Y, et al. Electrochimica Acta, 2020, 361, 137041.
111 Benítez A, Amaro G J, Chien Y C, et al. Renewable and Sustai-nable Energy Reviews, 2022, 154, 111783.
112 Zheng Y, Ni X, Li K, et al. Composites Communications, 2022, 32, 101116.
113 Lu J, Wang C, Yu H, et al. Advanced Functional Materials, 2019, 29(49), 1906126.
114 Peng Y, Zhang R, Fan B, et al. Small, 2020, 16(42), 2003724.
115 Adams B, Tian M, Chen A. Electrochimica Acta, 2009, 54(5), 1491.
116 Yang X, Zhang R Y, Zhao J, et al. Advanced Energy Materials, 2018, 8(8), 1701827.
117 Zhao X, Jia W, Wu X, et al. Carbon, 2020, 156, 445.
118 Chen H, He J, Ke G, et al. Nanoscale, 2019, 11(35), 16253.
119 Xu Y, Zhu Y, Liu Y, et al. Advanced Energy Materials, 2013, 3(1), 128.
120 Yan Y, Lu X, Li Y, et al. Journal of Alloys and Compounds: an Interdisciplinary, 2022, 899, 163342.
121 Chen Y, Yuan X, Yang C, et al. Journal of Alloys and Compounds, 2019, 777, 127.
122 Ye J, Xia G, Yang X, et al. Journal of Alloys and Compounds, 2022, 891, 161951.
123 Park J S, Park G D, Kang Y C. Journal of Materials Science & Techno-logy, 2021, 89, 24.
124 Li X, Li X, Fan L, et al. Applied Surface Science, 2017, 412, 170.
125 Peng J, Li W, Wu Z, et al. Sustainable Materials and Technologies, 2022, 32, 410.
126 Yang Y, Li D, Zhang J, et al. Materials Letters, 2019, 256, 126613.
127 Sun Y N, Goktas M, Zhao L, et al. Journal of Colloid and Interface Science, 2020, 572, 122.
128 Jiang Q, Kurra N, Maleski K, et al. Advanced Energy Materials, 2019, 9(26), 1901061.
129 Wang X, Han K, Qin D, et al. Nanoscale, 2017, 9(46), 18216.
130 Verma R, Didwal P N, Ki H S, et al. ACS Applied Materials & Interfaces, 2019, 11(30), 26976.
131 Cao L, Gao X, Zhang B, et al. ACS Nano, 2020, 14(3), 3610.
132 Wang J, Wang B, Liu X, et al. Chemical Engineering Journal, 2020, 382, 123050.
133 An Y, Tian Y, Ci L, et al. ACS Nano, 2018, 12(12), 12932.
134 Chen K, Sun Z, Fang R, et al. Advanced Functional Materials, 2018, 28(38), 1707592.
[1] 庄明兴, 卡盖·索音图, 付文英, 司司, 余添玉, 杨俊东, 章剑, 梁宇欣, 赵新生, 魏永生. 硼/磷掺杂电解水析氢金属催化剂的研究现状与进展[J]. 材料导报, 2023, 37(S1): 22080121-11.
[2] 钱红梅, 洪铤锴. N-S共掺杂CN/NS-TiO2纳米复合材料的制备及可见光催化性能[J]. 材料导报, 2023, 37(S1): 22110216-7.
[3] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[4] 刘晨曦, 庞国旺, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能. S和Al掺杂单层g-C3N4电子结构与光学性质的第一性原理研究[J]. 材料导报, 2023, 37(9): 21100044-6.
[5] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[6] 庞超明, 唐志远, 杨志远, 黄鹏. 水泥基材料中的早强剂及其作用机理综述[J]. 材料导报, 2023, 37(9): 21110247-11.
[7] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[8] 郝璐, 于德梅. 聚吡咯纳米复合材料的研究进展[J]. 材料导报, 2023, 37(9): 21110151-10.
[9] 邵慧龙, 费志方, 李肖华, 赵爽, 李昆锋, 杨自春. 玻璃微珠/PI气凝胶复合材料的制备与吸声性能研究[J]. 材料导报, 2023, 37(9): 21090097-6.
[10] 刘云福, 刘峰, 姚初清, 蒋丹枫, 韩文敏, 戴耀东. 基于泡沫陶瓷三维互穿网络负压浸渍法制备新型耐高温中子屏蔽材料[J]. 材料导报, 2023, 37(8): 21090118-9.
[11] 王鹏飞, 梁明, 贾佳林, 马小波, 徐晓燕. 脉冲磁体用高强高导Cu-Nb复合线材的研究进展[J]. 材料导报, 2023, 37(8): 21120237-8.
[12] 杨赟, 刘璇, 崔益华, 余彤, 武康乐, 潘蕾. 植物纤维增强树脂基复合材料界面纳米化改性的研究进展及应用[J]. 材料导报, 2023, 37(8): 21100069-11.
[13] 李水源, 徐镇宇, 李克, 周奎. 金属阳离子掺杂对羟基磷灰石微球性能的影响[J]. 材料导报, 2023, 37(7): 20100280-7.
[14] 孙宗旭, 张焕芝, 荆锐, 吴博竞, 徐芬, 夏永鹏, 孙立贤. 相变复合纳米纤维的研究与应用[J]. 材料导报, 2023, 37(7): 21060061-8.
[15] 罗重阳, 李宇杰, 王丹琴, 刘双科, 陈宇方, 郑春满. 改性电解液促进均匀锂沉积的研究进展[J]. 材料导报, 2023, 37(6): 21070209-11.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed