Please wait a minute...
材料导报  2023, Vol. 37 Issue (9): 21110151-10    https://doi.org/10.11896/cldb.21110151
  高分子与聚合物基复合材料 |
聚吡咯纳米复合材料的研究进展
郝璐, 于德梅*
西安交通大学化学学院,西安 710049
Research Progress in Polypyrrole Nanocomposites
HAO Lu, YU Demei*
School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
下载:  全 文 ( PDF ) ( 5686KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚吡咯具有较大的比电容、较高的电导率、较好的化学稳定性等诸多优点,被认为是最有可能实现工业化生产的导电聚合物。然而,常规块状聚吡咯通常在电学、光学和生物学特性方面存在不足,而纳米结构聚吡咯由于明确的纳米结构和更大的表面积,具有特殊的电化学活性、改善的光学性能和良好的生物相容性。此外,面对日新月异的科技发展,单一的聚吡咯纳米材料已经不足以应对各方面的应用需求,而聚吡咯纳米复合材料保留了单个组分的功能以及与其他功能材料集成时的协同效应,可以同时具备几种材料各自的优点,从而大大拓宽聚吡咯的应用范围。本文综述了聚吡咯纳米复合材料的研究进展,介绍了五种类型的聚吡咯纳米复合材料,基于其优异的导电性和可逆的氧化还原等性能,结合近几年的文献,介绍了聚吡咯纳米复合材料在储能、生物医学、吸附和杂质去除、电催化、吸波材料、传感器和腐蚀防护领域的应用,最后展望了这一研究领域目前所面临的挑战和机遇。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郝璐
于德梅
关键词:  聚吡咯  纳米复合物  储能  生物医药    
Abstract: Due to its large specific capacitance, high electrical conductivity, chemical stability and many other advantages, polypyrrole is considered to be the most likely conductive polymer for industrialization. However, bulk polypyrrole is usually deficient in electrical, optical and biological properties, while nano-structured polypyrrole has special electrochemical activity, improved optical properties and good biocompatibility due to its well-defined nanostructure and larger surface area. In addition, with the rapid development of science and technology, single polypyrrole nanomaterials have been insufficient to cope with the application needs of various aspects. However, polypyrrole nanocomposites can retain the function of the individual components and the synergistic effect when integrated with other functional materials, and can simultaneously possess the advantages of several materials, thus greatly broadening the application range of polypyrrole. This article summarizes the research progress of polypyrrole nanocomposites and introduces the five types of polypyrrole nanocomposites. Based on their excellent electrical conductivity and reversible redox properties, the applications of polypyrrole nanocomposites in the fields of energy storage, biomedicine, adsorption and impurity removal, electrocatalysis, wave-absorbing materials, sensors and corrosion protection are presented. Finally, the perspectives on the challenges and opportunities in this emerging area of research are discussed.
Key words:  polypyrrole    nanocomposite    energy storage    biomedicine
出版日期:  2023-05-10      发布日期:  2023-05-04
ZTFLH:  O626.1  
  TB332  
基金资助: 国家自然科学基金(51473133);陕西省国际科技合作项目(2015KW-016);教育部中央高校基本科研业务费专项科研项目(xjh012019034)
通讯作者:  *于德梅,西安交通大学化学学院教授、博士研究生导师。1984年天津大学化工系基本有机合成专业本科毕业后到西安交通大学工作至今,1989年西安交通大学化学化工学院高分子材料科学与工程专业硕士毕业,1998年西安交通大学电气工程学院电工材料与绝缘技术专业博士毕业。目前主要从事电功能高分子、功能纳米复合材料、聚合物加工和流变学等方面的研究工作。发表论文80余篇,包括Progress in Polymer Science、Journal of Physical Chemistry C、Carbon、Composite Science & Technology等。dmyu@xjtu.edu.cn   
作者简介:  郝璐,西安交通大学化学学院助理教授。2010年陕西师范大学化学与材料科学学院化学专业本科毕业,2019年西安交通大学材料科学与工程专业博士毕业后到西安交通大学工作至今。目前主要从事导电聚吡咯及其衍生物的制备、表征及性能等方面的研究工作。发表论文8篇,包括Progress in Organic Coatings、Materials Science & Engineering C、Journal of Adhesion Science & Technology等。
引用本文:    
郝璐, 于德梅. 聚吡咯纳米复合材料的研究进展[J]. 材料导报, 2023, 37(9): 21110151-10.
HAO Lu, YU Demei. Research Progress in Polypyrrole Nanocomposites. Materials Reports, 2023, 37(9): 21110151-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110151  或          http://www.mater-rep.com/CN/Y2023/V37/I9/21110151
1 Lu X, Zhang W, Wang C, et al. Progress in Polymer Science, 2011, 36, 671.
2 Long Y Z, Li M M, Gu C, et al. Progress in Polymer Science, 2011, 36, 1415.
3 Zheng J, Zhang J, Wang Z, et al. Advanced Materials, 2018, 30, 1802731.
4 Zhao F, Zhou X, Shi Y, et al. Nature Nanotechnology, 2018, 13, 489.
5 Guo F, Creighton M, Chen Y, et al. Carbon, 2014, 66, 476.
6 Qin J, Gao J, Shi X, et al. Advanced Functional Materials, 2020, 30, 1909756.
7 Kashani H, Chen L, Ito Y, et al. Nano Energy, 2016, 19, 391.
8 Wang L, Xu H, Song Y, et al. ACS Applied Materials and Interfaces, 2015, 7, 7619.
9 Liu B, Li J, Wang L, et al. Composites Part A:Applied Science and Manufacturing, 2017, 97, 141.
10 Shi H, Qin J, Huang K, et al. Angewandte Chemie International Edition, 2020, 59, 12147.
11 Dai H, Wang N, Wang D, et al. Chemical Engineering Journal, 2016, 299, 150.
12 Voider D, Michael F L. Science, 2013, 339, 535.
13 Chen Y, Yu X, Li Z, et al. Science Advances, 2016, 2, e1600021.
14 Yesi Y, Shown I, Ganguly A, et al. Chemsuschem, 2016, 9, 370.
15 Chang Z, Feng D, Huang Z, et al. Chemical Engineering Journal, 2018, 337, 552.
16 Yang M, Wang W, Qiu J, et al. Angewandte Chemie International Edition, 2019, 58, 17671.
17 Lee S H, Bae J, Lee S W, et al. Nanoscale, 2015, 7, 17328.
18 Lee J S, Oh J, Kim S G, et al. Small, 2015, 11, 2399.
19 Lee J, Kim S, Cho S, et al. Nanoscale, 2015, 7, 20665.
20 Liu K, Li Y, Zhang H, et al. Applied Surface Science, 2018, 439, 226.
21 Wang H, Ma N, Yan Z, et al. Nanoscale, 2015, 7, 7189.
22 Muhamad S U, Idris N H, Yusoff H M, et al. Electrochimica Acta, 2017, 249, 9.
23 Ke R, Zhang X, Zhang S, et al. Physical Chemistry Chemical Physics, 2015, 17, 27548.
24 Ren J, Qian B, Li J. Corrosion Science, 2016, 111, 596.
25 Li L, Peng S, Chen H, et al. Nano Energy, 2016, 19, 307.
26 Feng J, Xu H, Ye S, et al. Angewandte Chemie International Edition, 2017, 56, 8120.
27 Wang L, Yang H, Liu X, et al. Angewandte Chemie International Edition, 2017, 56, 1105.
28 Du X, Yang T, Lin J, et al. ACS Applied Materials and Interfaces, 2016, 8, 15598.
29 Zhang J, Shi Y, Ding Y, et al. Nano Letters, 2016, 16, 7276.
30 Pruna A, Shao Q, Kamruzzaman M, et al. Electrochimica Acta, 2016, 187, 517.
31 Wu J, Dai Y, Pan Z, et al. Applied Surface Science, 2020, 510, 145529.
32 Zhu L, Lu L, Wang H, et al. Biosensors and Bioelectronics, 2019, 140, 96.
33 Kong D, Ren W, Cheng C. ACS Applied Materials and Interfaces, 2015, 7, 21334.
34 Malook K, Ihsan-ul-Haque, Khan M, et al. Journal of Materials Science:Materials in Electronics, 2019, 30, 3882.
35 Karimi A, Husain S W, Hosseini M, et al. Microchimica Acta, 2020, 187, 398.
36 Karimi A, Husain S W, Hosseini M, et al. Sensors and Actuators B:Chemical, 2018, 271, 90.
37 Hanif Z, Shin D, Choi D, et al. Chemical Engineering Journal, 2020, 381, 122700.
38 Zhang Y, Li L, Zhang L, et al. Nano Energy, 2017, 31, 174.
39 Wang H, Hu M, Fei G, et al. Cellulose, 2015, 22, 3305.
40 Parit M, Du H, Zhang X, et al. Carbohydrate Polymers, 2020, 240, 116304.
41 Li T, Zhou Y, Dou Z, et al. Electrochimica Acta, 2017, 243, 228.
42 Lin Q, Yang Y, Ma Y, et al. Nano Letters, 2018, 18, 7485.
43 Wang X, Chen X, Peng H, et al. Journal of Materials Chemistry B, 2020, 8, 1033.
44 Yang X, Ge D, Wu G, et al. ACS Applied Materials and Interfaces, 2016, 8, 16289.
45 Milroy C, Manthiram A. Advanced Materials, 2016, 28, 9744.
46 Yao H, Zhang F, Zhang G, et al. Chemical Engineering Journal, 2018, 334, 2547.
47 Alves A P P, Koizumi R, Samanta A, et al. Nano Energy, 2017, 31, 225.
48 Kangkamano T, Numnuam A, Limbut W, et al. Biosensors and Bioelectronics, 2017, 102, 217.
49 Wang Z, Tammela P, Stromme M, et al. Nanoscale, 2015, 7, 3418.
50 Yuan X, Li J, Zhang C, et al. Electrochimica Acta, 2020, 340, 135969.
51 Lima R M A P, Alcaraz-Espinoza J J, da Silva F A G, et al. ACS Applied Materials and Interfaces, 2018, 10, 13783.
52 Ewulonu C M, Chukwuneke J L, Nwuzor I C, et al. Carbohydrate Polymers, 2020, 235, 116028.
53 Balaji M, Nithya P, Mayakrishnan A, et al. Applied Surface Science, 2020, 510, 145403.
54 Yan M, Yao Y, Wen J, et al. ACS Applied Materials and Interfaces, 2016, 8, 24525.
55 Cheng Q, Yang C, Tao K, et al. Electrochimica Acta, 2020, 341, 136042.
56 Wang M, Zhang L, Zhong Y J, et al. Nanoscale, 2018, 10, 17341.
57 Yang X, Shi K, Zhitomirsky I, et al. Advanced Materials, 2015, 27, 6104.
58 Xing R, Xia Y, Huang R, et al. Chemical Communications, 2020, 56, 3115.
59 Liang X, Zhang M, Kaiser M R, et al. Nano Energy, 2015, 11, 587.
60 Fang Y, Yu X, Lou X. Angewandte Chemie International Edition, 2018, 57, 9859.
61 Cao L, Zhang B, Ou X, et al. Small, 2019, 15, 1804861.
62 Talikowska M, Fu X, Lisak G. Biosensors and Bioelectronics, 2019, 135, 50.
63 Song X, Liang C, Gong H, et al. Small, 2015, 11, 3932.
64 Tian Y, Zhang J, Tang S, et al. Small, 2016, 12, 721.
65 Zhu Y, Fan H, Chen S, et al. ACS Applied Materials and Interfaces, 2016, 8, 34209.
66 Li D S, Yoon S J, Pelivanov I, et al. Nano Letters, 2017, 17, 6184.
67 Maruthapandi M, Nagvenkar A P, Perelshtein I, et al. ACS Applied Polymer Materials, 2019, 1, 1181.
68 Zhou S, Wang M, Chen X, et al. ACS Sustainable Chemistry and Engineering, 2015, 3, 3346.
69 Xiong G M, Yap Y Z, Choong C. Nanomedicine, 2016, 11, 749.
70 Hsiao P F, Anbazhagan R, Tsai H C, et al. Materials Science and Engineering C:Materials for Biological Applications, 2020, 107, 110330.
71 Wang H, Yuan X, Wu Y, et al. Chemical Engineering Journal, 2015, 262, 597.
72 Zhou J, Lu Q F, Luo J J. Journal of Cleaner Production, 2017, 167, 739.
73 Oliveira R C P, Jadranka M, Elif D, et al. Applied Catalysis B:Environmental, 2018, 238, 454.
74 Yang J, Wang X, Li B, et al. Advanced Functional Materials, 2017, 27, 1606497.
75 Guo X, Hu K, Chu M, et al. Chemsuschem, 2020, 13, 3707.
76 Midya L, Chettri A, Pal S. ACS Sustainable Chemistry and Engineering, 2019, 7, 9416.
77 Liu J, Wang H, Bai J, et al. Journal of Materials Chemistry A, 2017, 5, 24920.
78 Tian C, Du Y, Xu P, et al. ACS Applied Materials and Interfaces, 2015, 7, 20090.
79 Yang R, Reddy P, Chang C, et al. Chemical Engineering Journal, 2016, 285, 497.
80 Wang N, Zhao W, Shen Z, et al. Sensors and Actuators B:Chemical, 2020, 304, 127286.
81 Qin Y, Cui Z, Zhang T, et al. Sensors and Actuators B:Chemical, 2018, 258, 246.
82 Arulraj A D, Arunkumar A, Vijayan M, et al. Electrochimica Acta, 2016, 206, 77.
83 Ghasemi S, Bari M R, Pirsa S, et al. Carbohydrate Polymers, 2020, 232, 115801.
84 Babaei-Sati R, Parsa J B, Vakili-Azghandi M. Synthetic Metals, 2019, 247, 183.
85 Zhu Q, Li E, Liu X, et al. Progress in Organic Coatings, 2020, 140, 105488.
86 Lay M, Méndez J A, Delgado-Aguilar M, et al. Carbohydrate Polymers, 2016, 152, 361.
87 Shi Y, Wang M, Ma C, et al. Nano Letters, 2015, 15, 6276.
[1] 周创, 蔡苇, 陈大凯, 杨蕊如, 章恒, 陈刚. Tm3+对AgNbO3反铁电陶瓷微结构和储能性能的影响[J]. 材料导报, 2023, 37(6): 21090143-6.
[2] 姬旭敏, 孙滨洲, 李聪, 胡澎浩. 利用多层薄膜技术提升聚合物基复合材料介电储能密度的研究进展[J]. 材料导报, 2022, 36(9): 20080247-7.
[3] 江幸, 孔勇, 赵志扬, 沈晓冬. 球形气凝胶材料的研究进展[J]. 材料导报, 2022, 36(8): 20040032-8.
[4] 胡时, 蔡海兵, 马祖桥, 袁助, 丁祖德. 不同加载速率下饱水高延性喷射混凝土的单轴压缩试验[J]. 材料导报, 2022, 36(8): 21090227-10.
[5] 曹鹏飞, 刘雅婷, 陈妮, 汤文静, 李福枝, 夏勇, 孙翱魁. 水系锌离子电池正极材料的研究进展[J]. 材料导报, 2022, 36(23): 21010239-13.
[6] 肖维新, 袁静, 严开祺, 张敬杰. 生物聚合物气凝胶的制备与应用研究进展[J]. 材料导报, 2022, 36(20): 21030322-10.
[7] 李洁, 张佳, 付明琴, 许立强, 胡其志, 李小鹏, 余萃. 介孔SiO2负载有机基二元定型复合相变储能材料的性能研究[J]. 材料导报, 2021, 35(z2): 483-487.
[8] 李伟培, 何世杰, 邱志明, 吴松平, 严玉蓉. 载体孔属性对多孔复合PCMs热性能的影响:综述[J]. 材料导报, 2021, 35(Z1): 495-500.
[9] 安海霞, 王景平, 杨立, 杨百勤, 李喜飞. 聚吡咯涂层改性的高温自阻断锂离子电池及其性能[J]. 材料导报, 2021, 35(4): 4007-4011.
[10] 张静茹, 张志昂, 韩笑, 房蕊, 徐若歆, 赵丽丽. 提高PVDF基有机-无机柔性复合膜储能密度的研究新进展[J]. 材料导报, 2021, 35(23): 23162-23170.
[11] 余先纯, 孙德林, 计晓琴, 王张恒. 木质素基碳纳米片组装木陶瓷电极的结构调控与电化学储能[J]. 材料导报, 2021, 35(2): 2012-2018.
[12] 杨正芳, 张悦, 蔡金霄, 刘志勇, 胡觉. 层状双金属氢氧化物及其复合材料的制备与应用研究新进展[J]. 材料导报, 2021, 35(19): 19062-19069.
[13] 孙丹, 李伟, 刘峥. 二维纳米材料MXene及其在锂离子电池中的应用研究进展[J]. 材料导报, 2021, 35(15): 15047-15055.
[14] 易润华, 邓黎鹏, 程东海, 刘奋成. 基于多指标综合评分方差分析的镍铬合金储能缝焊工艺研究[J]. 材料导报, 2021, 35(14): 14161-14165.
[15] 王成君, 段志英, 王爱军, 王志超, 崔璐娟, 苏琼. 基于共晶系相变材料的研究进展[J]. 材料导报, 2021, 35(13): 13058-13066.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed