Please wait a minute...
材料导报  2019, Vol. 33 Issue (24): 4062-4065    https://doi.org/10.11896/cldb.18110124
  无机非金属及其复合材料 |
碳酸钡在高温及高压下的相变行为
穆巴拉克·木里提江, 艾尼瓦尔·吾术尔, 王静, 鲁雅荣
新疆大学物理科学与技术学院, 乌鲁木齐 830046
Phase Transition of BaCO3 Under High Temperature and High Pressure
Mubarak Molutjan, Anwar Hushur, WANG Jing, LU Yarong
School of Physical Science and Technology, Xinjiang University, Urumqi 830046
下载:  全 文 ( PDF ) ( 2212KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究BaCO3在高温及高压下的相变行为,利用差示扫描量热法观察了BaCO3在常压下从室温到1 200 ℃的相变过程,之后结合拉曼光谱技术研究了BaCO3从常温常压到15.2 GPa压强的相变过程。由差热分析可知,BaCO3在808 ℃和955 ℃处存在两个吸热峰,分别对应斜方晶相到三方晶相和三方晶相到立方晶相的转变。当压强从常压升高到10.6 GPa时, BaCO3的各个模向高波数段移动,且未发生相变;其斜方晶系结构(Pmcn)到三方晶系结构(P31c)的相变发生在10.6 GPa附近;而高于10.6 GPa时也未观察到相变。从释放压强之后的BaCO3的拉曼光谱图上发现,[CO3]基团对称伸缩振动模v1与其初始相(斜方晶系结构)不对应,而对应其高压相(三方晶系结构)。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
穆巴拉克·木里提江
艾尼瓦尔·吾术尔
王静
鲁雅荣
关键词:  碳酸钡  高压  高温  拉曼散射  差示扫描量热法  相变    
Abstract: Aiming at exploring the phase transition behavior of BaCO3 under high temperature and high pressure, the differential scanning calorimeter (DSC) was employed to characterize the process of phase transition of BaCO3 from room temperature to 1 200 ℃, and Raman spectrometer was adopted to analyze the phase transition features of BaCO3 from atmospheric pressure to 15.2 GPa. According to the DSC analysis results, there were two endothermic peaks of BaCO3 at 808 ℃ and 955 ℃, which corresponded to the transitions of orthorhombic phase to trigonal phase and trigonal phase to cubic phase, respectively. When the pressure rose from atmospheric pressure to 10.6 GPa, the frequency shift of all Raman modes of BaCO3 increased monotonically, and no phase transition of BaCO3 was found under the pressure below 10.6 GPa. The phase transition of BaCO3 from orthorhombic (Pmcn) to trigonal (P31c) structure occurred around 10.6 GPa, and no further change in BaCO3 phases could be recognized in the spectra when the pressure exceeded 10.6 GPa. From the Raman spectra of pressure released BaCO3, v1 symmetric stretching band of the [CO3] did not retrogress from high pressure phase (trigonal structure) of BaCO3 to ambient phase (orthorhombic structure).
Key words:  BaCO3    high pressure    high temperature    Raman spectroscopy    differential scanning calorimetry    phase transition
               出版日期:  2019-12-25      发布日期:  2019-10-28
ZTFLH:  P313.3  
基金资助: 新疆大学博士启动基金(61341);千人计划;教育部留学回国人员科研启动基金(60594)
作者简介:  穆巴拉克·木里提江,2015年6月毕业于新疆大学,获得理学学士学位。现为新疆大学硕士研究生,在艾尼瓦尔·吾术尔博士的指导下进行研究。目前主要研究方向为高压物理;艾尼瓦尔·吾术尔博士,新疆大学学士 (1995),日本筑波大学硕士, 博士 (2006)。2006年4月至2011年4月在美国夏威夷大学Manoa校区的地球物理和天体学学院工作。现为新疆大学物理科学与技术学院老师。2012 年入选中国新疆自治区引进高层次人才计划。2013年入选中组部海外高层次人才引进计划“千人计划新疆项目”。主要研究方向为高压高温下制备新材料,并利用X射线衍射和光散射技术在高温高压下研究地球物质和材料特性。目前为止已在SCI国际权威期刊上发表了相关论文33篇,包括Journal of Physics、 Journal of Solid State Chemistry、 American Mineralogist、 Journal of Applied Physics、 Physical Review B等, 被引用347次, H指数11。13次参加国际学术会议并做会议报告。
引用本文:    
穆巴拉克·木里提江, 艾尼瓦尔·吾术尔, 王静, 鲁雅荣. 碳酸钡在高温及高压下的相变行为[J]. 材料导报, 2019, 33(24): 4062-4065.
Mubarak Molutjan, Anwar Hushur, WANG Jing, LU Yarong. Phase Transition of BaCO3 Under High Temperature and High Pressure. Materials Reports, 2019, 33(24): 4062-4065.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18110124  或          http://www.mater-rep.com/CN/Y2019/V33/I24/4062
1 Villiers D, Roos J P. Journal of Computational & Theoretical Nanoscience, 1967, 20(5),1077.2 Martinez I, Zhang J, Reeder R J. American Mineralogist, 1996, 81(5-6),611.3 Williams Q. American Mineralogist, Continental Shelf Research, 2004, 28(4-5),653.4 Lin C C, Liu L G. Physics & Chemistry of Minerals, 1997, 24(2),149.5 Berg G W. Nature, 1986, 324(6092),50.6 Janzen H H. Agriculture, Ecosystems and Environment, 2004,104(3),399.7 Javoy M, Pineau F, Allègre C J. Nature, 1983, 303(5919),730.8 Pal’Yanov Y N, Sokol A G, Borzdov Y M, et al. Nature, 1999, 400(6743),417.9 Carlson W D. Reviews in Mineralogy, 1983,11,191.10 Radha A V, Navrotsky A. Reviews in Mineralogy and Geochemistry, 2013, 77(1),73.11 Wolf G, Günther C. Journal of Thermal Analysis & Calorimetry, 2001, 65(3),687.12 Gurevich V M, Gavrichev K S, Gorbunov V E, et al. Geochemistry International, 2001, 39(10),1007.13 Jacobs G K, Kerrick D M, Krupka K M. Physics & Chemistry of Mine-rals, 1981,7(2),55.14 Nie S, Liu Y, Liu Q, et al. European Journal of Mineralogy, 2017, 29(3),104.15 Biedermann N, Speziale S, Winkler B, et al. Physics & Chemistry of Minerals, 2016, 44(5),335.16 Gibbins J, Chalmers H. Carbon Capture and Storage Energy Policy, 2008, 36(12),4317.17 Bachu S. Progress in Energy and Combustion Science, 2008, 34(2),254.18 Lin C C, Liu L G. European Journal of Mineralogy, 1997, 9(4),785.19 Holl C M, Smyth J R, Laustsen H M S, et al. Physics and Chemistry of Minerals, 2000, 27(7),467.20 Ono S. Physics and Chemistry of Minerals, 2007, 34(4),215.21 Ono S, Brodholt J P, Price G D. Mineralogical Magazine, 2008, 72(2),659.22 Townsend J P, Chang Y Y, Lou X, et al. Physics & Chemistry of Mine-rals, 2013,40(5),447.23 Wang M, Liu Q, Nie S, et al. Physics & Chemistry of Minerals, 2015, 42(6),517.24 Chaney J, Santillán J D, Knittle E, et al. Physics and Chemistry of Mi-nerals, 2014, 42(1),83.25 Ling H C. Journal of Materials Science, 1990, 25(7),3297.26 Lander J J. Journal of the American Chemical Society, 1951, 73(12),5893.27 Hodgman C. Handbook of chemistry and physics vol.Ⅱ. Chemical Rubber Publishing Co., USA,1955.28 Lander J J. Journal of Chemical Physics, 1949, 17(10),892.29 Antao S M, Hassan I. Physics and Chemistry of Minerals, 2007, 34(8),573.30 Mao H K, Bell P M. Science, 1976, 191(4229),851.31 Mao H K, Xu J, Bell P M. Journal of Geophysical Research Solid Earth,1986, 91(B5),4673.32 Arvanitidis I, Siche D, Seetharaman S. Metallurgical & Materials Tran-sactions B, 1996, 27(3),409.33 Biellmann C, Reynard B, Mcmillan P, et al. Physics & Chemistry of Minerals, 1993, 20(1),1.34 Gillet P. American Mineralogist, 1993, 78, 1328.35 Kraft S, Knittle E,Williams Q. Journal of Geophysical Research: Solid Earth, 1991,96(11), 17997.
[1] 李启泉,李岩,马悦辉. 钛基高温形状记忆合金进展综述[J]. 材料导报, 2020, 34(3): 3142-3147.
[2] 王晓娟,刘林,黄太文,杨文超,岳全召,霍苗,张军,傅恒志. 碳对镍基单晶高温合金凝固缺陷影响的研究进展[J]. 材料导报, 2020, 34(3): 3148-3156.
[3] 马启慧,王清,董闯. Co-Al-W基高温合金发展概述[J]. 材料导报, 2020, 34(3): 3157-3164.
[4] 季根顺, 陈晓龙, 贾建刚, 李小龙, 龚静博, 郝相忠. 液相汽化TG-CVI法制备C/C复合材料的组织和性能[J]. 材料导报, 2020, 34(2): 2029-2033.
[5] 申嘉荣, 徐千军. 高温对混凝土孔隙结构改变和抗压强度降低作用的规律研究[J]. 材料导报, 2020, 34(2): 2046-2051.
[6] 袁玖玮, 徐建明, 周罗增, 张玉凤, 张嘉颖, 张晓娟, 周文礼, 彭里其, 徐燕, 高湉. 高温超导块材第二相掺杂的研究进展[J]. 材料导报, 2019, 33(Z2): 65-69.
[7] 韩瑞路, 阎红娟. Ti-Si-N纳米多层膜的研究进展[J]. 材料导报, 2019, 33(Z2): 169-174.
[8] 杨林, 熊建坤, 余勇, 文仲波, 聂甫恒, 杨东, 王东力, 冯雨来. 大热输入对焊条电弧焊低合金钢力学性能的影响[J]. 材料导报, 2019, 33(Z2): 424-427.
[9] 翟建明, 徐彤, 王红霞, 马广青, 商学欣. 316L与16Mn材料抗高压氢脆性能研究[J]. 材料导报, 2019, 33(Z2): 497-500.
[10] 仇中柱, 李晟南, 魏丽东, 秦承芳, 姚远, 姜未汀, 郑莆燕, 张涛. 相变微胶囊悬浮液中颗粒润湿性对导热系数的影响[J]. 材料导报, 2019, 33(Z2): 623-626.
[11] 张燕. 一步法制备无表面修饰剂花状金纳米颗粒及其表面增强拉曼散射性能研究[J]. 材料导报, 2019, 33(z1): 314-317.
[12] 郑贝贝, 邵玲. 国内Bi系高温超导材料制备工艺研究进展[J]. 材料导报, 2019, 33(z1): 318-320.
[13] 邱凌, 吴红庆, 张乐, 吴晓春. 碳含量对Cr-Mo-V系模具钢连续冷却转变规律的影响[J]. 材料导报, 2019, 33(z1): 386-391.
[14] 刘新灵, 陶春虎, 王天宇. 夹杂物形状对夹杂/基体界面应力应变分布的影响[J]. 材料导报, 2019, 33(z1): 436-439.
[15] 赖榕永, 王温馨, 谢雯倩, 丁益民. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J]. 材料导报, 2019, 33(z1): 219-222.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed