Please wait a minute...
材料导报  2022, Vol. 36 Issue (18): 21010199-5    https://doi.org/10.11896/cldb.21010199
  无机非金属及其复合材料 |
混凝土超低温力学特性及本构关系研究
段品佳1, 毕晓星1, 李宇航1, 刘娟红2,3,4,*, 周大卫2, 程立年2, 娄百川2
1 中海石油气电集团有限责任公司,北京 100028
2 北京科技大学土木与资源工程学院,北京 100083
3 北京科技大学城市地下空间工程北京市重点实验室,北京 100083
4 北京科技大学金属矿山高效开采与安全教育部重点实验室,北京 100083
Study on the Mechanical Properties and Constitutive Relations of Concrete Under Cryogenic Circumstance
DUAN Pinjia1, BI Xiaoxing1, LI Yuhang1, LIU Juanhong2,3,4,*, ZHOU Dawei2, CHENG Linian2, LOU Baichuan2
1 CNOOC Gas & Power Group Ltd., Beijing 100028, China
2 School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China
3 Beijing Key Laboratory of Urban Underground Space Engineering, University of Science and Technology Beijing, Beijing 100083, China
4 Key Laboratory of the Ministry of Metal Mining and Safety Education, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 2753KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作针对全混凝土液化天然气(LNG)储罐服役期间面临的超低温环境(-165 ℃)问题,配制了一种高强耐超低温混凝土(LHC)。对不同低温LHC和普通C60混凝土进行单轴和三轴压缩试验,得出了LHC和C60混凝土的强度变化规律。借助双参数本构模型,表征了应力和温度耦合作用下LHC和C60混凝土的变形特性。结果表明,在单轴压缩试验中,随着温度的降低,LHC的强度从65.3 MPa(20 ℃)增长到96.2 MPa(-165 ℃);普通C60混凝土的强度先增加后降低,在-140 ℃时达到最大值78.1 MPa;LHC和C60的延性均随温度降低呈波动下降趋势。在三轴应力状态下,LHC和C60的强度和延性均随温度的降低有所增大。两组试验条件下,LHC均比普通C60混凝土具有更优异的低温力学性能。本研究可以为LHC在全混凝土液化天然气储罐的应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
段品佳
毕晓星
李宇航
刘娟红
周大卫
程立年
娄百川
关键词:  LNG储罐  超低温  混凝土  强度  本构关系    
Abstract: To solve the problem of cryogenic circumstance (-165 ℃) faced by all-concrete liquefied natural gas(LNG) storage tanks during service, a low-temperature resistant and high-strength concrete (LHC) was formulated. The compressive strength change laws of LHC and ordinary C60 concretes were obtained through the uniaxial and triaxial compression tests under different low temperature conditions. A two-parameter constitutive model was adopted to characterize the deformation characteristics of LHC and C60 concrete under the combined effect of stress and temperature. The test results show that the strength gradually increases as the temperature decreases in the uniaxial test, and the strength of LHC increases from 65.3 MPa (20 ℃) to 96.2 MPa (-165 ℃); the strength of ordinary C60 concrete increases first and then decreases, reaching the maximum value of 78.1 MPa at -140 ℃; the ductility values of LHC and C60 both fluctuate and decrease with the drop of temperature. Under triaxial stress, the strength and ductility of LHC and C60 increase with the drop of temperature. Under the two sets of test conditions, LHC has better cryogenic mechanical properties than ordinary C60 concrete. The research results of this study can provide reference for the application of LHC in all-concrete LNG storage tanks.
Key words:  LNG storage tanks    cryogenic circumstance    concrete    strength    constitutive relation
收稿日期:  2022-09-25      出版日期:  2022-09-25      发布日期:  2022-09-26
ZTFLH:  TU528  
基金资助: 国家重点研发计划资助项目(2016YFC0600803);中央高校基本科研业务费—深地岩体工程材料及其服役安全(FRF-BD-20-01B)
通讯作者:  *juanhong1966@hotmail.com   
作者简介:  段品佳,2012年6月毕业于中国石油大学(北京),获得博士学位。于2012年9月至今,中国海洋石油集团有限公司,主要从事液化天然气存储技术研究。刘娟红,北京科技大学教授。1985年9月—1989年7月,武汉工业大学硅酸盐专业,学士;1995年9月—1998年7月,武汉工业大学建筑材料专业,硕士;2006年3月—2009年1月,中国矿业大学(北京)矿物材料工程专业,博士。主要研究生态环保型高性能土木工程结构材料、新型混凝土材料及其环境行为与建筑物寿命分析和矿山充填用新型胶凝材料研究与应用,共发表SCI、EI论文几十篇。
引用本文:    
段品佳, 毕晓星, 李宇航, 刘娟红, 周大卫, 程立年, 娄百川. 混凝土超低温力学特性及本构关系研究[J]. 材料导报, 2022, 36(18): 21010199-5.
DUAN Pinjia, BI Xiaoxing, LI Yuhang, LIU Juanhong, ZHOU Dawei, CHENG Linian, LOU Baichuan. Study on the Mechanical Properties and Constitutive Relations of Concrete Under Cryogenic Circumstance. Materials Reports, 2022, 36(18): 21010199-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010199  或          http://www.mater-rep.com/CN/Y2022/V36/I18/21010199
1 Kim S, Kim M, Yoon H, et al. Cryogenics, 2018, 93, 75.
2 Kogbara R B, Iyengar S R, Grasley Z C, et al. Construction and Buil-ding Materials, 2013, 47, 760.
3 Xie J, Yan J B. Structural Concrete, 2018, 19(4),1235.
4 Jiang Z W, He B, Zhu X P, et al. Construction and Building Materials, 2020, 257, 119456.
5 Masad N, Zollinger D, Kim S, et al. Materials and Structures, 2016, 49,2141.
6 Zhu X P, Qian C, He B, et al. Cement and Concrete Research,2020,135,106114.
7 Zhu X P, Jiang Z W, He B, et al. Construction and Building Materials, 2020, 252, 119103.
8 Zhang N, Liao J, Ji W Z, et al. Journal of the Chinese Ceramic Society, 2014, 42(11), 1404(in Chinese).
张楠,廖娟,戢文占,等. 硅酸盐学报, 2014, 42(11), 1404.
9 Hu S W, Fan B. Magazine of Concrete Research, 2020, 72(16),837.
10 MacLean T J, Lloyd A. Journal of Cold Regions Engineering, 2019, 33(4),04019014.
11 Krstulovic-opara N. ACI Materials Journal, 2007, 104, 297.
12 Jiang Z W, Deng Z L, Zhu X P, et al. Cryogenics, 2018, 94, 5.
13 Dahmani L, Khenane A, Kaci S. Cryogenic, 2007, 47, 517.
14 MarshalL A L. Cryogenics, 1982, 22(11), 555.
15 Rostásy F S, Weiβ R, Wiedemann G. Cement and Concrete Research, 1980, 10(2), 157.
16 Idiart A E, López C M, Carol L, et al. Cement and Concrete Composites, 2011, 33(3), 411.
17 Hao W N, Li S G, Ji T, et al. Journal of China Institute of Water Resources and Hydropower Research, 2019, 17(5), 394(in Chinese).
郝伟男,李曙光,计涛,等. 中国水利水电科学研究院报,2019,17(5), 394.
18 Shi X D, Wang W Q, Tian J L. Engineering Mechanics, 2020, 37(2), 211(in Chinese).
时旭东,汪文强,田佳伦. 工程力学, 2020, 37(2), 211.
19 Shi X D, Cui Y D, Qian L. Industrial Construction, 2020, 50(8), 85(in Chinese).
时旭东,崔一丹,钱磊. 工业建筑, 2020, 50(8), 85.
20 Shi X D, Li Y Q, Qian L, et al. Engineering Mechanics, 2019, 36(8), 106(in Chinese).
时旭东,李亚强,钱磊,等. 工程力学,2019,36(8), 106.
21 Shi X D, Li Y Q, Qian L, et al. Concrete, 2020(8), 1(in Chinese).
时旭东,李亚强,钱磊,等. 混凝土,2020(8), 1.
22 Tian W, Han N, Zhang P K. Journal of Central South University (Science and Technology), 2017(11), 3069(in Chinese).
田威,韩女,张鹏坤. 中南大学学报(自然科学版),2017(11), 3069.
23 Liu J H, Zhou Y C, Yang H T, et al. Journal of China Coal Society, 2019, 44(10), 2983(in Chinese).
刘娟红, 周昱程, 杨海涛, 等. 煤炭学报, 2019, 44(10), 2983.
24 Liu J H, Zhou Y C, Ji H G. Journal of China Coal Society, 2018,43(12), 3364(in Chinese).
刘娟红, 周昱程, 纪洪广. 煤炭学报, 2018, 43(12), 3364.
25 Yang H T, Duan P J, Wu R D, et al. Materials Reports B: Research Papers, 2020, 34(8), 16043(in Chinese).
杨海涛,段品佳,吴瑞东,等.材料导报:研究篇,2020,34(8),16043.
26 Gao Y W. Experimental study on mechanical properties deterioration of early frozen concrete. Master's Thesis, North China University of Water Resources and Electric Power, China, 2019(in Chinese).
高懿伟. 早期受冻混凝土的力学性能劣化规律试验研究. 硕士学位论文, 华北水利水电大学, 2019.
27 Guo Z H, Li W. China Civil Engineering Journal, 1993, 26(5), 58(in Chinese).
过镇海,李卫. 土木工程学报, 1993, 26(5), 58.
28 Li Z Q, Wang G Q, Yang S, et al. Chinese Journal of Applied Mecha-nics, 2019, 36(5), 1131(in Chinese).
李志强,王国庆,杨森,等. 应用力学学报, 2019, 36(5), 1131.
[1] 贾慧灵, 于海滨, 吴锦绣, 谭心, 王峰, 孙士阳. Al、Cr、Fe掺杂对KDP(001)晶面力学性能影响的第一性原理研究[J]. 材料导报, 2022, 36(Z1): 22020116-6.
[2] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[3] 屠艳平, 陈国夫, 程子扬, 程书凯. 纳米SiO2对再生骨料沥青混凝土性能的影响[J]. 材料导报, 2022, 36(Z1): 22030139-5.
[4] 陈燕强, 钱春香, 张健. 材料参数对清水混凝土表观气孔控制的影响[J]. 材料导报, 2022, 36(Z1): 22030021-9.
[5] 郑超, 朱本谦, 陈清蓉, 杨泽波, 刘勇. 基于水泥熟料与矿物掺合料制备新胶凝材料体系[J]. 材料导报, 2022, 36(Z1): 21100177-3.
[6] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[7] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[8] 王嘉昊, 沈玉, 刘娟红, 罗昆. 不同种类缓凝剂对半水磷石膏凝结时间和硬化性能的影响[J]. 材料导报, 2022, 36(Z1): 21120173-5.
[9] 王晓娇, 戚承志, 周理安, 李太行, 陈昊祥, 王泽帆, 马啸宇, 封焱杰, 罗伊. 掺再生微粉的城墙内芯土渗透性和强度研究[J]. 材料导报, 2022, 36(Z1): 21100220-6.
[10] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[11] 陈瑞明, 向阳开, 梁路, 赵毅. 冻融循环与预应力共同作用下混凝土抗压强度试验研究[J]. 材料导报, 2022, 36(Z1): 21120009-5.
[12] 周万良, 邓欢. 基于NaOH激发矿渣和硅酸盐水泥的功能梯度混凝土的抗氯离子渗透性能[J]. 材料导报, 2022, 36(Z1): 21100082-4.
[13] 王子仪, 张武龙, 王瑞燕, 邓伟新, 吴沂. 石蜡热工介质对混凝土绝热温升的影响[J]. 材料导报, 2022, 36(Z1): 21080274-5.
[14] 杜青铉, 张宇航, 孙伟豪, 刘蕊, 庄尧量, 夏军武. 基于混合模型的煤矸石透水混凝土透水系数预测[J]. 材料导报, 2022, 36(Z1): 22040077-5.
[15] 尹道道, 王海, 张珍杰, 向飞, 王海龙, 纪宪坤. 室外环境下不同尺寸混凝土中膨胀剂的应用效果研究[J]. 材料导报, 2022, 36(Z1): 21110148-4.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed