Please wait a minute...
材料导报  2021, Vol. 35 Issue (15): 15189-15196    https://doi.org/10.11896/cldb.20050124
  金属与金属基复合材料 |
新型汽车用Q&P钢的研究现状与发展趋势
杜金亮, 冯运莉, 张颖隆
华北理工大学冶金与能源学院,现代冶金技术教育部重点实验室,唐山 063210
Research Status and Development Trend of New Automotive Q&P Steel
DU Jinliang, FENG Yunli, ZHANG Yinglong
Key Laboratory of the Ministry of Education for Modern Metallurgy Technology, College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, China
下载:  全 文 ( PDF ) ( 5883KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着大气环境问题的日益加剧且全球范围面临着能源危机,在未来的几十年里,节能减排仍然是全球性的研究主题。汽车行业被要求在不降低安全性的前提下减轻车身质量,以达到节能减排的目的。汽车的轻量化推动先进高强钢从第一代发展到如今的第三代。先进高强钢主要通过合金成分设计、热轧、冷轧、热处理等工艺的配合对其微观结构进行调控来实现轻量化和安全性,且其内部变形机制研究更有助于把握性能调控过程。
第一代、第二代汽车用钢的弊端主要有以下两方面:一方面,主要以铁素体等软相作为基体,导致钢的综合力学性能差,难以实现真正的轻量化;另一方面,第二代汽车钢性能的提升是以大量合金元素的添加为代价,生产成本较高,而且在商业化大生产当中铸造、热处理等工艺难以精细控制,存在诸多弊端。因此,第三代汽车钢得到良性的发展,其综合力学性能填补了第一代与第二代汽车钢之间的空白。Q&P钢作为典型代表,利用淬火-配分工艺,对多相、亚稳态和多尺度的微结构进行精细控制,可以获得马氏体、铁素体和奥氏体的混合组织。与第二代相比,第三代汽车钢的合金元素含量更低,满足了降低成本的要求。面心立方(FCC)与体心立方(BCC)的混合结构使得第三代汽车钢具有高强塑积(抗拉强度×延伸率)的特点,它的性能已接近时代汽车用钢的目标水平。
本文概述了新型汽车用Q&P钢的发展历程,介绍了合金元素的作用、成型时的回弹,按照热处理工艺参数顺序(加热温度、淬火温度、配分温度、配分时间)阐述了工艺优化的内在原理。总结了塑性变形的强韧机制——“四种效应、两种机制”,思考了Q&P钢动态力学性能对工程实际应用的重要性,根据重大研究成果提出新的Q&P钢强化建议——晶界相变强化。最后描述了当前Q&P钢基础理论研究和工业化发展所面临的问题,并对该领域进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜金亮
冯运莉
张颖隆
关键词:  Q&P钢  晶界相变强化  强韧机制  动态力学性能  回弹性    
Abstract: With the increasing of atmospheric environmental problems and the global energy crisis, energy conservation and emission reduction will remain a global theme in the coming decades. The automotive industry is required to reduce body weight without reducing safety in order to achieve the goal of energy saving and emission reduction. The lightweight of automobiles has promoted the development of advanced high-strength steel from the first generation to the third generation today. Advanced high-strength steel is mainly through the combination of alloy composition design, hot rolling, cold rolling, heat treatment and other processes to adjust its microstructure to achieve lightweight and safety, and its internal deformation mechanism research is more helpful to grasp the performance control process.
The disadvantages of the first and second generation automobile steels mainly include the following two aspects: On the one hand, the main use of ferrite and other soft phases as the matrix leads to poor comprehensive mechanical properties, making it difficult to achieve true weight reduction; on the other hand, the second the improvement of the performance of the automotive steel is at the expense of the addition of a large number of alloying elements, which increases the production cost, and it is difficult to finely control the casting and heat treatment processes in the commercial production, and there are many disadvantages. Therefore, the third-generation automotive steel has achieved sound development, and its comprehensive mechanical properties have filled the gap between the first and second-generation automotive steels. As a typical representative, Q&P steel uses the quenching-partitioning process to finely control the multi-phase, metastable and multi-scale microstructure, and obtain a mixed structure of martensite, ferrite and austenite. Compared with the second generation, the third generation automobile steel has a lower alloying element content, which meets the requirements of reducing costs. The hybrid structure of FCC and BCC brings the characteristics of high-strength plastic product (tensile strength × elongation), which makes the performance of the third-generation automobile steel close to the target level of the times.
This article summarizes the development history of new Q&P steels for automobiles, introduces the role of alloying elements, springback during forming, and explains the internal principles of process optimization according to the order of heat treatment process parameters (heating temperature, quenching temperature, distribution temperature, distribution time). Summarized the toughness mechanism of plastic deformation-“four effects, two mechanisms”, considered the importance of dynamic mechanical properties to practical engineering applications, and put forward new Q&P steel strengthening recommendations based on major research results-grain boundary phase transformation strengthen. Finally, it describes the problems facing the current development and looks forward to the field.
Key words:  Q&P steel    grain boundary transformation strengthening    strong mechanism    dynamic mechanical properties    resilience
               出版日期:  2021-08-10      发布日期:  2021-08-31
ZTFLH:  TG142  
基金资助: 国家自然科学基金委面上项目(51974134;51674123);河北省自然科学基金重点项目(E2017209237)
作者简介:  杜金亮,华北理工大学硕士研究生,2014年9月至2018年6月在华北理工大学获得金属材料工程学士学位。目前主要研究方向:第三代汽车钢的轻量化研究。
冯运莉,华北理工大学教授,博士研究生导师,学科带头人,国家级特色专业-金属材料工程专业负责人。2001年在华北理工大学金属材料及加工工程系工作至今。在国内外学术期刊上发表论文130余篇,出版教材2部,获得国家发明专利授权7项。其团队主要研究方向包括:磁性材料、超细晶/纳米晶金属材料、材料加工新技术与组织性能控制、材料表面处理、汽车轻量化研究、高熵合金及高性能钢铁材料的开发等。近年承担国家自然科学基金面上项目6项,河北省杰出青年基金、支撑计划等省部级项目7项,市厅级及横向科研项目30余项。获河北省科技进步二等奖2项,三等奖3项,国家冶金科学技术三等奖1项。
引用本文:    
杜金亮, 冯运莉, 张颖隆. 新型汽车用Q&P钢的研究现状与发展趋势[J]. 材料导报, 2021, 35(15): 15189-15196.
DU Jinliang, FENG Yunli, ZHANG Yinglong. Research Status and Development Trend of New Automotive Q&P Steel. Materials Reports, 2021, 35(15): 15189-15196.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050124  或          http://www.mater-rep.com/CN/Y2021/V35/I15/15189
1 Hagen I, Wieland H J. In: Proceedings of the Conference on Steels in Cars and Trucks, Germany,2005,pp. 226.
2 Matlock D K, Brautigam V E, Speer J G. Materials Science Forum,2003,426(4),1089.
3 Gerdemann F L H, Speer J G. Materials Science and Technology,2004,1,439.
4 Wang J, Li B, Gu Y, et al. Materials Science and Engineering: A,2020,772,138765.
5 Wang M, Huang M X. Acta Materialia,2020,188,551.
6 Li Y, Li W, Xu C, et al. Materials Science and Engineering: A,2020,781,139207.
7 Xu Y S, Gong Y, Du H, et al. International Journal of Lightweight Materials and Manufacture,2020,3(1),26.
8 Lehnert R, Weidner A, Schimpf C, et al. Materialia,2019,8,100498.
9 Ebner S, Suppan C, Stark A, et al. Materials and Design,2019,178,107862.
10 Nyyssönen T, Peura P, Williamson D, et al. Materials Characterization,2019,148,71.
11 Li Y, Li W, Na M, et al. Acta Materialia,2017,139,96.
12 Cooman B C D. Metallurgical and Materials Transactions A,2016,48,1.
13 Diego-Calderón I D, Rodriguez-Calvillo P, Lara A, et al. Materials Science & Engineering: A,2015,641,215.
14 Suh D W, Ryu J H, Joo M S, et al. Metallurgical and Materials Transactions A,2013,44(1),286.
15 Hajyakbary F, Sietsma J, Petrov R H, et al. Scripta Materialia,2017,137,27.
16 Lee Y K, Han J. Materials Science and Technology,2015,7(31),843.
17 Zhang X F, Yang H, Li J X, et al. Materials Reports B: Research Papers,2018,32(8),107(in Chinese).
章小峰,杨浩,李家星,等.材料导报:研究篇,2018,32(8),107.
18 Shao C, Hui W, Zhang Y, et al. Materials Science and Engineering: A,2017,682,45.
19 Sohn S S, Lee B J, Lee S, et al. Acta Materialia,2013,61(13),5050.
20 Lee S, Estrin Y, Cooman B C. Metallurgical and Materials Transactions A,2013,44(7),3136.
21 Yan S, Liu X, Liu W J, et al. Materials Science and Engineering: A,2017,684,261.
22 Moor E D, Lacroix S, Clarke A J, et al. Metallurgical and Materials Transactions A,2008,39(11),2586.
23 Hajyakbary F, Sietsma J, Petrov R H, et al. Scripta Materialia,2017,137,27.
24 Hajyakbary F, Santofimia M J, Sietsma J. Advanced Materials Research,2014,829,100.
25 Mola J, Cooman B C D. Scripta Materialia,2011,65(9),834.
26 Tsuchiyama T, Tobata J, Tao T, et al. Materials Science and Enginee-ring: A,2012,532,585.
27 Diego-Calderón I D, Rodriguez-Calvillo P, Lara A, et al. Materials Science and Engineering: A,2015,641,215.
28 Xu Z Y. Heat Treatment,2007,22(1),1(in Chinese).
徐祖耀.热处理,2007,22(1),1.
29 Zhou L, Tang G, Ma X, et al. Materials Characterization,2018,146,258.
30 Li Y, Li W, Xu C, et al. Materials Science and Engineering: A,2020,781,139207.
31 Li Y, Li W, Min N, et al. Acta Materialia,2017,139,96.
32 Cai H L, Chen P, Oh J K, et al. Scripta Materialia,2020,178(15),77.
33 Xu Y, Gong Y, Du H, et al. International Journal of Lightweight Mate-rials and Manufacture,2020,3(1),26.
34 Allain S, Chateau J P, Bouaziz O. Materials Science and Engineering: A,2004,387(1),143.
35 De B L, Mendez J. Procedia Engineering,2010,2(1),2171.
36 De K D, Santofimia M J, Shi H, et al. Acta Materialia,2015,90,161.
37 Thomas G A, Speer J G. Materials Science and Technology,2014,30(9),998.
38 Li W, Gao H, Nakashima H, et al. International Journal of Minerals Metallurgy and Materials,2016,23(8),906.
39 Behera A K, Olson G B. Scripta Materialia,2018,147,6.
40 Toji Y, Matsuda H, Herbig M, et al. Acta Materialia,2014,65,215.
41 Seo E J, Cho L, Cooman B C D. Acta Materialia,2016,107,354.
42 Rong Y H, Cheng N L. Acta Metallurgica Sinica,2017,53(1),1(in Chinese).
戎咏华,陈乃录.金属学报,2017,53(1),1.
43 Song C H. Investigation of competitive mechanism during partitionning and deformation coordination mechanism of I&QP steel. Ph.D. Thesis, University of Science and Technology Beijing, China,2018(in Chinese).
宋成浩.I&QP钢在配分时的竞争机制及变形协调机理的研究.博士学位论文,北京科技大学,2018.
44 Xiong X C, Chen B, Huang M X, et al. Scripta Materialia,2013,68(5),321.
45 Li J, Weng G J, Chen S, et al. International Journal of Plasticity,2017,88,89.
46 Jiang F, Takaki S, Masumura T, et al. International Journal of Plasticity,2020,129,102700.
47 Meiners T, Frolov T, Rudd R E, et al. Nature,2020,579,375.
48 Xia P, Vercruysse F, Petrov R, et al. Materials Science and Engineering: A,2019,745,53.
49 Xu Y, Hu Z, Zou Y, et al. Materials Science and Engineering: A,2017,688,40.
50 Liu L, Yu Qin, Wang Z, et al. Science,2020,188,551.
51 Yan L C, Xu B Y. Mechanics in Engineering,2002,24(3),41.
52 Lems W. Physica,1962,28(4),445.
53 Yang M, Akiyama Y, Sasaki T. Journal of Materials Processing Technology,2004,151(1),232.
54 Perez R, Benito J A, Prado J M. ISIJ International,2005,45(12),1925.
55 Benito J A, Manero J M, Jorba J, et al. Metallurgical and Materials Transactions A,2005,36(12),3317.
56 Vin L J D, Streppel A H, Singh U P, et al. Journal of Materials Proces-sing Technology,1996,57(1),48.
[1] 冯振宇, 李恒晖, 刘义, 解江, 牟浩蕾, 惠旭龙, 舒挽. 中低应变率下7075-T7351铝合金本构与失效模型对比[J]. 材料导报, 2020, 34(12): 12088-12093.
[2] 刘倩, 郑小平, 张荣华, 田亚强, 陈连生. 新型汽车用高强度中锰钢研究现状及发展趋势[J]. 材料导报, 2019, 33(7): 1215-1220.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed