Please wait a minute...
材料导报  2024, Vol. 38 Issue (3): 22060103-6    https://doi.org/10.11896/cldb.22060103
  金属与金属基复合材料 |
增材制造316L不锈钢组织结构特征与硬化机理
刘源, 寇浩南, 何怡清, 尤瑞昶, 张鑫, 滕居珩, 李尧*, 张凤英
长安大学材料科学与工程学院,西安 710064
Microstructural Characteristics and Hardening Mechanism of Additively Manufactured 316L Stainless Steels
LIU Yuan, KOU Haonan, HE Yiqing, YOU Ruichang, ZHANG Xin, TENG Juheng, LI Yao*, ZHANG Fengying
School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China
下载:  全 文 ( PDF ) ( 17346KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过电弧送丝技术(WAAM)、激光同轴送粉(DED)以及激光选区熔化(SLM)增材制造技术制备出含有不同胞晶/枝晶尺寸的316L不锈钢,揭示了枝晶/胞状结构的形成及对力学性能的影响。结果表明:WAAM、DED和SLM试样的胞晶/枝晶尺寸依次减小,对应的冷却速率依次增大。同时,在WAAM和DED样品中枝晶/胞晶间区域发现骨状δ铁素体以及Cr、Mo的富集,但在SLM样品中未观察到以上现象,这主要是因为SLM过程中的高冷却速率显著抑制了δ铁素体的形成和元素偏析。WAAM、DED、SLM样品的显微硬度依次增加,其硬化机制与凝固胞状结构尺寸密切相关,且增材制造过程的热应力导致的高密度位错也对硬度有一定贡献。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘源
寇浩南
何怡清
尤瑞昶
张鑫
滕居珩
李尧
张凤英
关键词:  金属增材制造  胞状结构  硬化机理    
Abstract: 316L stainless steels with dendritic/cellular structure in various sizes were prepared by different additive manufacturing technologies, that is, wire and arc additive manufacturing (WAAM), directed energy deposition (DED), and laser selective melting (SLM). The formation mec-hanism of dendritic/cellular structure and its influence on the mechanical properties were studied. The results show that the cell/dendrite size progressively decreases in WAAM, DED, and SLM, due to the increase in cooling rates. Meanwhile, bone-like δ ferrites and pronounced enrichment of Cr and Mo are observed in the intercellular/interdendritic regions of the WAAM and DED samples, whereas such phenomena are absent in the SLM sample, because the high cooling rate during SLM significantly suppressed the formation of δ ferrites and element segregation. The microhardness of WAAM, DED, and SLM samples increased progressively, and the hardening mechanism is highly related to the solidification cellular/dendrite size as well as the high density of dislocations induced by the thermal stresses during the additive manufacturing process.
Key words:  metal additive manufacturing    cellular structure    hardening mechanism
出版日期:  2024-02-10      发布日期:  2024-02-19
ZTFLH:  TG142.71  
基金资助: 陕西省重点研发计划(2022GY-383);长安大学中央高校基本科研业务费(300102313205);西北工业大学凝固技术国家重点实验室开放课题(SKLSP202110)
通讯作者:  *李尧,长安大学材料科学与工程学院副教授,硕士研究生导师。2018年6月获得西安交通大学材料科学与工程专业博士学位。近年来主要从事高能束(激光和电子束)焊接/增材制造镍基高温合金和难熔金属间化合物的显微组织与力学性能本构关系的研究,同时致力于同步辐射先进表征技术在材料学科的应用与软件开发。目前在国外学术刊物上发表SCl论文30余篇,包括Nature Communications、Additive Manufacturing、Applied Phy-sics Letters、Materials & Design等国际知名期刊,其中一篇人选ESI高被引论文。此外,获得已授权计算机软件著作权4项。liyaomse@chd.edu.cn   
作者简介:  刘源,2020年6月毕业于华北水利水电大学,获得工学学士学位。现为长安大学材料科学与工程学院硕士研究生,在张凤英教授及李尧副教授的指导下进行研究。目前主要研究领域为金属增材制造。
引用本文:    
刘源, 寇浩南, 何怡清, 尤瑞昶, 张鑫, 滕居珩, 李尧, 张凤英. 增材制造316L不锈钢组织结构特征与硬化机理[J]. 材料导报, 2024, 38(3): 22060103-6.
LIU Yuan, KOU Haonan, HE Yiqing, YOU Ruichang, ZHANG Xin, TENG Juheng, LI Yao, ZHANG Fengying. Microstructural Characteristics and Hardening Mechanism of Additively Manufactured 316L Stainless Steels. Materials Reports, 2024, 38(3): 22060103-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060103  或          http://www.mater-rep.com/CN/Y2024/V38/I3/22060103
1 Kalinin G, Barabash V, Cardella A, et al. Journal of Nuclear Materials, 2000, 283, 10
2 Guo S, Han E H, Wang H T, et al. Acta Metallurgica Sinica, 2017, 53(4), 455 (in Chinese).
郭舒, 韩恩厚, 王海涛, 等. 金属学报, 2017, 53(4), 10.
3 Wang Z N, Liang T, Zhang L, et al. Rare Metal Materials and Enginee-ring, 2018, 47 (11), 8 (in Chinese).
王志楠, 梁田, 张龙, 等. 稀有金属材料与工程, 2018, 47 (11), 8.
4 Zhong Y, Ránnar Lars-Erik, Liu L F, et al. Journal of Nuclear Mate-rials, 2017, 486 (12), 234.
5 Huang W D. The Journal of New Industrialization, 2016, 6 (3), 53 (in Chinese).
黄卫东. 新型工业化, 2016, 6(3), 53.
6 Huang S H, Peng L, Mokas Da R A, et al. The International Journal of Advanced Manufacturing Technology, 2013, 67(5), 1191.
7 Herzog D, Seyda V, Wycisk E, et al. Acta Materialia, 2017, 117, 371.
8 Lewandowski J J, Seifi M. Annual Review of Materials Research, 2016, 46, 151.
9 Wang Z, Palmer T A, Beese A M. Acta Materialia, 2016, 110, 226.
10 Zhong J, Sun Z, Xi P, et al. NPG Asia Materials, 2018, 10(4), 127.
11 Wang Y M, Voisin T, Mckeown J T, et al. Nature Materials, 2018, 17(1), 63.
12 Ramakrishnan P. Indian Welding Journal, 1972, 4(3), 89.
13 Xiao H. Microstructure control and its mechanisms during laser additive manufacturing of Inconel 718. Ph. D. Thesis, Hunan University, China, 2017 (in Chinese).
肖辉. 激光增材制造Inconel 718合金凝固组织调控及机理研究. 博士学位论文, 湖南大学, 2017
14 Zhong Y, Liu L, Wikman S, et al. Journal of Nuclear Materials, 2016, 470, 170.
15 Ding Q, Fu X, Chen D, et al. Materials Today, 2019, 25, 21.
16 Shamsujjoha M, Agnew S R, Fitz-Gerald J M, et al. Metallurgical and Materials Transactions A, 2018, 49(7), 3011.
17 Li Z, He B, Guo Q. Scripta Materialia, 2020, 177, 17.
18 Chen X, Li J, Cheng X, et al. Materials Science and Engineering A, 2017, 703, 567.
19 Ma M, Wang Z, Zeng X. Materials Science and Engineering A, 2017, 685, 265.
20 Frazier W E. Journal of Materials Engineering and Performance, 2014, 23 (6), 1917.
21 Thijs L, Sistiaga M M, Wauthle R, et al. Acta Materialia, 2013, 61 (12), 4657.
22 Wan H Y, Zhou Z J, Li C P, et al. Journal of Materials Science and Technology, 2018, 34 (10), 1799.
23 Pham M S, Dovgyy B, Hooper P A, et al. Nature Communications, 2020, 11, 749.
24 Debroy T, Wei H L, Zuback J, et al. Progress in Materials Science, 2018, 92, 112.
25 Fu J W, Yang Y S, Guo J J, et al. Metal Science Journal, 2008, 24 (8), 941.
26 Wang X G, Liu F C, Fang P, et al. Transactions of the China Welding Institution, 2019, 40(5), 9 (in Chinese).
王晓光, 刘奋成, 方平, 等. 焊接学报, 2019, 40(5), 9.
27 Krauss, G. Metallurgical and Materials Transactions B, 2003, 34(6), 781.
28 Antonsson T, Fredriksson H. Metallurgical and Materials Transactions B, 2005, 36, 85.
29 Saeidi K, Gao X, Zhong Y, et al. Materials Science and Engineering A, 2015, 625, 221.
30 David S A, Vitek J M, Reed R W, et al. Welding Research Supplement, DOI:10. 2172/5957599.
31 Umeda T, Okane T. Science & Technology of Advanced Materials, 2001, 2 (1), 231.
32 Osada T, Gu Y, Nagashima N, et al. Acta Materialia, 2013, 61 (5), 1820.
33 Chen X H, Lu J, Lu L, et al. Scripta Materialia, 2005, 52(10), 1039.
[1] 武多多, 郑会龙, 康振亚, 习常清, 张谭. 基于金属骨架的复合材料混合结构拉伸性能与失效机理分析[J]. 材料导报, 2022, 36(20): 21050214-7.
[2] 彭天恩, 连智伟, 何博, 胡学文, 蒋波, 刘雅政. 工艺参数对经济型耐候钢显微组织及硬化机理的影响[J]. 材料导报, 2022, 36(2): 20120194-6.
[3] 王爱国, 王星尧, 孙道胜, 朱颖灿, 刘开伟, 经验, 管艳梅. 地质聚合物凝结硬化及其调节技术的研究进展[J]. 材料导报, 2021, 35(13): 13001-13010.
[4] 产玉飞, 陈长军, 张敏. 金属增材制造过程的在线监测研究综述[J]. 材料导报, 2019, 33(17): 2839-2846.
[5] 巴奇楠, 宋仁伯, 冯一帆, 李论. 表面爆炸处理后的ZGMn13Cr2钢的冲击磨损性能及硬化机理[J]. 材料导报, 2019, 33(10): 1712-1716.
[6] 耿汝伟, 杜军, 魏正英, 魏培. 金属增材制造中微观组织相场法模拟研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1145-1150.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed