Please wait a minute...
材料导报  2019, Vol. 33 Issue (5): 744-749    https://doi.org/10.11896/cldb.201905003
  材料与可持续发展(二)——材料绿色制造与加工* |
生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论
郭丽萍1,2,3, 谌正凯1, 陈波4, 杨亚男1
1 东南大学材料科学与工程学院,南京 211189;
2 江苏省土木工程材料重点实验室,南京 211189;
3 江苏省先进土木工程材料协同创新中心,南京 211189;
4 南京水利科学研究院,水文水资源与水利工程科学国家重点实验室,南京 210029
Adaptable Design Theory and Reliability Verification of an Ecological High Ductility Cementitious Composites: Part Ⅰ, Adaptable Design Theory
GUO Liping1,2,3, CHEN Zhengkai1, CHEN Bo4, YANG Yanan1
1 School of Materials Science & Engineering, Southeast University, Nanjing 211189;
2 Jiangsu Key Laboratory of Construction Materials, Nanjing 211189;
3 Collaborative Innovation Center for Advanced Civil Engineering Materials, Nanjing 211189;
4 State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029
下载:  全 文 ( PDF ) ( 1427KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 目前,国内普遍使用多元化固体废弃物粉末和自主研发的高强高模合成纤维来制备生态型高延性水泥基复合材料(Ecological high ductility cementitious composites, Eco-HDCC)。然而,原有高延性水泥基复合材料经典设计理论中的理论判据与现有Eco-HDCC材料的实际情况不完全相符,已不能适用于这类多元复合Eco-HDCC材料的可靠性设计与性能调控,因此,迫切需要对该经典材料设计理论进行修正和优化。本研究引入纤维分散系数和主裂缝断面有效纤维体积率两个修正参数,重新限定四个控制参数的取值范围,对经典HDCC设计理论进行了优化修正,并通过测试典型配比Eco-HDCC的宏观力学性能、微观力学性能与纤维分散度,评价可适性设计理论的合理性。研究结果证明,当采用本研究修正后的可适性设计理论并将关键设计参数取值范围控制于0.75≤α*≤1、Vf,effect>1.5%、PSH1>2.0、PSH2>1.2时,Eco-HDCC材料可稳定实现高延性(单轴拉伸荷载下的极限应变超过2%)和多缝开裂的特性。本研究结果不仅可使采用多元化固体废弃物粉末和国内自主研发的高强高模PVA纤维制备的Eco-HDCC复合材料的设计过程更加有据可依、灵活可靠,而且能使其满足不同延性和性价比的工程需求,具有重要的理论意义和工程指导价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭丽萍
谌正凯
陈波
杨亚男
关键词:  生态型高延性水泥基复合材料  可适性设计理论  有效纤维体积率  纤维分散系数  微观力学性能    
Abstract: Currently, various recycled solid waste powders and domestic designed synthetic fibers with high tensile strength and high modulus are widely used for preparing ecological high ductility cementitious composites (Eco-HDCC) in China. However, the theoretical criterion in classical design theory of HDCC is out of touch with the actual situation of the present Eco-HDCC materials, and can not be fully applied to the reliability design and performance control of multicomponent composite Eco-HDCC materials. Consequently, there is an urgent need for modifying and optimizing the classical design theory of HDCC. In this study, the classic design theory of HDCC was reformed by introducing two modified parameters, namely fiber dispersion coefficient and effective fiber volume ratio of main crack section, and limiting the value ranges of four key parameters according to theoretical calculation and test results. The reasonableness of design theory of suitability was evaluated by testing the mechanical pro-perties, micro-mechanical behaviors and fiber dispersion effect of the designed Eco-HDCCs with typical mix proportions. It could be proved by the results that Eco-HDCC held a steady performance of high ductility (the average ultimate tensile strain exceeds 2%) and featured multiple cracks when the modified design theory was adopted, and the value of four key parameters were carefully controlled within the optimizing range (namely, fiber dispersion index α* of 0.75—1, effective fiber volume fraction Vf,effect>1.5%, energy safe margin PSH1>2.0, stress safe margin PSH2>1.2). Accordingly, the results of this study can not only make design process of the Eco-HDCC composites prepared by various types of solid wastes and domestic synthetic fibers with high strength and high modulus be more reliable and flexible, but also satisfy different engineering demands of ductility and performance-price ratio, which exhibit important theoretical significance and engineering guidance value.
Key words:  ecological high ductility cementitious composites    adaptable design theory    effective fiber volume fraction    dispersion index of fiber    micro-mechanical properties
               出版日期:  2019-03-10      发布日期:  2019-03-12
ZTFLH:  TU528  
基金资助: 国家重点研发计划(2018YFC0406702);国家自然科学基金(51778133;51438003;51739008);973项目(2015CB655102);江苏省六大人才高峰计划(JZ-004)和福建省交通科技项目(2017Y057)
作者简介:  郭丽萍,东南大学副教授、博导,入选2015年度江苏省第十二批“六大人才高峰”项目、2018年度江苏省第五期“333工程”第三层次人才。guoliping691@163.com
引用本文:    
郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
GUO Liping, CHEN Zhengkai, CHEN Bo, YANG Yanan. Adaptable Design Theory and Reliability Verification of an Ecological High Ductility Cementitious Composites: Part Ⅰ, Adaptable Design Theory. Materials Reports, 2019, 33(5): 744-749.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201905003  或          http://www.mater-rep.com/CN/Y2019/V33/I5/744
1 Li V C, Leung C K Y. Journal of Engineering Mechanics,1992,118(11),2246.
2 Pan Z, Wu C, Liu J. Construction and Building Materials,2015,78,397.
3 Turk K, Demirhan S. Canadian Journal of Civil Engineering,2013,40(2),151.
4 Li M, Li V C. Materials and Structures,2013,46(3),405.
5 Felekoglu B, Tosun-Felekoglu K, Ranade R, et al. Composites Part B: Engineering,2014,60,359.
6 Hussein M, Kunieda M, Nakamura H. Cement and Concrete Composites,2012,34(9),1061.
7 Hou L, Xu S, Liu H, et al. Journal of Advanced Concrete Technology,2015,13(2),82.
8 Sahmaran M, Lachemi M, Li V C. Concrete,DOI:10.1520/STP49084S.
9 Özbay E, Karahan O, Lachemi M. Composites Part B: Engineering,2013,45(1),1384.
10 Kim J K, Kim J S, Ha G J. Cement and Concrete Research,2007,37(7),1096.
11 Kojima S, Sakata N, Kanda T, et al. Concrete Journal,2004,42(5),135.
12 Fukuyama H, Suwada H, Ilseung Y. In: Proceeding DFRCC Int′l Workshop, Ta kayama, Japan,2002,pp.219.
13 Qudah S, Maalej M. Engineering Structures,2014,69(9),235.
14 Zhang L H, Guo L P, Sun W , et al. Journal of the Chinese Ceramic So-ciety,2014,42(8),1018(in Chinese).
张丽辉,郭丽萍,孙伟,等.硅酸盐学报,2014,42(8),1018.
15 Zhang L H, Guo L P, Sun W, et al. Journal of Southeast University (Natural Science Edition),2014,44(5),1037(in Chinese).
张丽辉,郭丽萍,孙伟,等.东南大学学报(自然科学版),2014,44(5),1037.
16 Chai L J, Guo L P, Chen B, et al. Journal of Southeast University (Natural Science Edition),2018,48(3),543(in Chinese).
柴丽娟,郭丽萍,陈波,等.东南大学学报(自然科学版),2018,48(3),543.
17 Guo L P, Chen B, Sun W, et al. Journal of Building Structures,2018,39(7),169(in Chinese).
郭丽萍,陈波,孙伟,等.建筑结构学报,2018,39(7),169.
18 Guo L P, Chen B, Sun W, et al. Journal of Southeast University (Natural Science Edition),2017,47(6),1221(in Chinese).
郭丽萍,陈波,孙伟,等.东南大学学报(自然科学版),2017,47(6),1221.
19 Jiang G Q. Preparation techniques, basic performances, micro-mechanism and simulation analysis of ECO-ECC. Ph.D. Thesis, Southeast University, China,2009(in Chinese).
姜国庆.ECO-ECC的制备技术,性能,微观机理及仿真分析.博士学位论文,东南大学,2009.
20 Zhang J, Ju X. Cement and Concrete Research,2011,41(8),903.
21 Tian L, Jing B, Zhao T J, et al. Building Science,2007,23(6),76(in Chinese).
田砺,荆斌,赵铁军,等.建筑科学,2007,23(6),76.
22 Zhu G H, Tian L, Guo P G, et al. Engineering Construction,2006,38(5),7(in Chinese).
朱桂红,田砺,郭平功,等.工程建设,2006,38(5),7.
23 Guo L L. Research and numerical simulation on the mechanical properties of strain hardening cementitious composites (SHCC). Master’s Thesis, Qingdao Technological University, China,2010(in Chinese).
郭磊磊.应变硬化水泥基复合材料(SHCC)力学性能研究及数值模拟.硕士学位论文,青岛理工大学,2010.
24 Li V C. In: Proceedings of 4th RILEM International Symposium on Fiber Reinforced Concrete. Sheffield,1992,pp.12.
25 Li V C, Mishra D K, Wu H C. Materials and Structures,1995,28(10),586.
26 Kanda T, Li V C. Journal of Advanced Concrete Technology,2006,4(1),59.
27 Marshall D, Cox B N. Mechanics and Materials,1988,7,127.
28 Li V C. Journal of Structural Mechanics and Earthquake Engineering,1993,10(2),37.
29 Redon C, Li V C, Wu C, et al. Journal of Materials in Civil Enginee-ring,2001,13(6),399.
30 Li V C. Structural Mechanics and Earthquake Engineering,1994,10(2),37.
31 Chen Z K. Optimized design and key performance of domestic green high ductility cementitious composites. Master’s Thesis, Southeast University, China,2015(in Chinese).
谌正凯.国产化绿色高延性水泥基复合材料优化设计与关键性能.硕士学位论文,东南大学,2015.
[1] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed