Please wait a minute...
材料导报  2019, Vol. 33 Issue (20): 3367-3371    https://doi.org/10.11896/cldb.18090064
  无机非金属及其复合材料 |
碲化铋基热电器件的有限元模拟与设计组装
王杨1, 张忻1, 刘洪亮1, 王阳仲1, 张久兴1,2
1 北京工业大学材料科学与工程学院,北京100022
2 合肥工业大学材料科学与工程学院,合肥 230009
Finite Element Simulation and Design of Thermoelectric Generators Based on Bismuth Telluride Alloys
WANG Yang1, ZHANG Xin1, LIU Hongliang1, WANG Yangzhong1, ZHANG Jiuxing1,2
1 School of Materials Science and Engineering, Beijing University of Technology, Beijing 100022
2 School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009
下载:  全 文 ( PDF ) ( 2479KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用ANSYS软件构建碲化铋基多热电对的仿真模型,研究了不同热电对数量对热电器件性能的影响及应力分布,建立可实现的器件模型。模拟结果表明,热电器件的应力主要分布在各个材料的接触面上。在热电器件冷端面、热端面温差恒定为50 ℃、输入电流为9 A时,热电器件的制冷系数取得最大值,为0.24;输入电流为10 A时,取得最大制冷量1.33 W。对器件的制备工艺进行改进,成功制备出七对热电对构成的平面型热电器件。在重新构建的ANSYS模型中引入接触电阻,显著降低了制冷系数,当设定温差为10 ℃、冷端面温度为20 ℃时,制冷系数为0.03。这也为后续热电器件的制备提供了理论指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王杨
张忻
刘洪亮
王阳仲
张久兴
关键词:  有限元模拟  热电器件  碲化铋基热电材料  制冷系数    
Abstract: Thermoelectric property and stress distribution were simulated by ANSYS software to provide the groundwork of device preparation based the material experiment. The computed results showed that the heat stress of the device was distributed on the contact surface of different mate-rials. It reached the highest refrigeration efficiency of 0.24 with the condition of current 9 A, 0 ℃ on the cold face and 50 ℃ difference. The hig-hest refrigeration capacity was 1.33 W with the current of 10 A and the shakeout temperature was equivalent. The refrigeration efficiency and capacity were sharply decreased considering the contact resistance. The thermoelectric efficiency was only 0.03 with 20 ℃ on the cold face and 10 ℃ difference. A planer thermoelectric device contained 7 pairs of thermoelectric couple was successfully fabricated after improving the fabrication process, which provide a theoretical direction for the subsequent fabrication of thermoelectric generators.
Key words:  finite element simulation    thermoelectric generator    thermoelectric material based on bismuth telluride    refrigeration efficiency
               出版日期:  2019-10-25      发布日期:  2019-08-29
ZTFLH:  TN304  
基金资助: 国家自然科学基金资助项目(51371010; 51572066; 50801002)
作者简介:  王杨,博士研究生。2013年7月获石家庄铁道大学材料科学与工程学士学位,2013年9月至今在北京工业大学材料科学与工程学院学习,研究方向为新型阴极电子材料以及热电材料。张忻,男,副研究员,1975年10月出生。2006年1月毕业于北京工业大学材料学专业,获工学博士学位,同年5月开始在北京工业大学材料科学与工程学院从事教学和科研工作。2011年获得北京市优秀青年骨干教师项目资助,2013年9月—2014年9月于清华大学访学,2015年3月—2016年3月于日本东北大学访学。目前主要从事热电能源转换材料及其器件以及新型阴极电子材料领域的研究。先后主持和参与国家自然科学基金、北京市自然科学基金、北京市教委、装备预研、国际合作、科研院所、企事业单位合作项目等科研课题15项。担任J. Appl. Phy.、J. Alloy. Comp.、J.Electr. Mater.等国际刊物审稿人。zhxin@bjut.edu.cn
引用本文:    
王杨, 张忻, 刘洪亮, 王阳仲, 张久兴. 碲化铋基热电器件的有限元模拟与设计组装[J]. 材料导报, 2019, 33(20): 3367-3371.
WANG Yang, ZHANG Xin, LIU Hongliang, WANG Yangzhong, ZHANG Jiuxing. Finite Element Simulation and Design of Thermoelectric Generators Based on Bismuth Telluride Alloys. Materials Reports, 2019, 33(20): 3367-3371.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18090064  或          http://www.mater-rep.com/CN/Y2019/V33/I20/3367
1 Francisco S, Amin N, Daryoosh V, et al. Energy Environmental Science, 2016, 9, 2100.2 Ziolkowski P, Poinas P, Leszczynski J, et al. Journal of Electronic materials, 2010, 39, 1935.3 Li S L, Zheng W, Zhai C, et al. Popular Science and Technology, 2012, 14(12), 81 (in Chinese).李少林,郑伟,瞿诚,等.大众科技,2012,14(12), 81.4 Ge Y, Liu Z C, Sun H N, et al. Energy, 2018, 1, 99.5 Picard M, Turenne S, Vasilevskiy D, et al. Journal of Electronic Mate-rials, 2013, 7(42), 2344.6 Zhang Y, Bian Z X,Shakouria I. In:24th International Conference on Thermoelectrics. Clemson, IEEE, 2005, pp.234.7 Chen L G, SunF R, Wu C H. Applied Energy, 2005, 81(4), 359.8 Chen X H, Lin B H, Chen J C. Applied Energy, 2006, 83(7), 682.9 Lin B H. Journal of Quanzhou Normal University (Natural Science), 2002, 20(6), 21(in Chinese).林比宏.泉州师范学院学报(自然科学), 2002, 20(6), 21.10 Pan Y Z, Lin B H. Journal of Quanzhou Normal University (Natural Scie-nce), 2006, 24(6), 14(in Chinese).潘玉灼, 林比宏.泉州师范学院学报(自然科学), 2006, 24(6), 14.11 Zhang N, Li P, Xiao J S, et al. Journal of Wuhan University of Technology (Materials Science), 2008, 30(1), 10(in Chinese).张宁, 李鹏, 肖金生, 等.武汉理工大学学报(材料科学版), 2008, 30(1), 10.12 Zheng H S, Zhang L L, Hou X F, et al. Chinese Journal of Power Sources, 2006, 30(6), 497(in Chinese).郑海山, 张丽丽, 侯旭峰, 等.电源技术, 2006, 30(6), 497.13 Ren B G, Peng L, Zhang J Z. Chinese Journal of Power Sources, 2008, 32(9), 625(in Chinese).任保国, 彭磊, 张建中.电源技术, 2008, 32(9), 625.14 Li Y, Zeng B Q, Zhao Y Y. Chinese Journal of Power Sources, 2009, 27(158), 535(in Chinese).李影, 曾葆青, 赵媛媛.节能技术, 2009, 27(158), 53515 Soto M A, Venkatasubramanian R. In:24th International Conference on Thermoelectrics. Clemson, IEEE, 2005,pp. 219.16 Clin T H, Turenne S, Vasilevskiy D, et al. Journal of Electronic Mate-rials, 2009, 38(7), 995.17 Turenne S, Clin T H, Vasilevskiy D, et al. Journal of Electronic Mate-rials, 2010, 39(9), 1927.18 Zhang Q H, Liao J C, Tang Y S, et al. Energy and Environmental Scie-nce, 2017, 10, 956.
[1] 王月敏, 商磊, 闫相桥, 李新刚, 李垚. 基于纳米压痕技术的光子晶体薄膜实验研究与有限元模拟[J]. 材料导报, 2019, 33(14): 2283-2286.
[2] 石磊, 柳翊, 沈俊芳, 金文中, 王黎, 张伟. P-ECAP挤压镁合金空心壁板的晶粒度演变模拟和实验研究[J]. 材料导报, 2019, 33(12): 2019-2024.
[3] 李云飞, 曾祥国. 基于不可逆热力学的Ni-Ti合金动态本构模型及其有限元实现[J]. 材料导报, 2019, 33(10): 1676-1680.
[4] 余志远, 王昌, 汶斌斌, 艾迪, 刘汉源, 于振涛. AZ31镁合金管材游动芯头拉拔有限元模拟[J]. 材料导报, 2018, 32(16): 2778-2782.
[5] 贾翠玲, 陈芙蓉. 超声冲击处理对铝合金焊接应力的影响[J]. 材料导报, 2018, 32(16): 2816-2821.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed