Abstract: The device structure of a near-infrared Mg2Si/Si heterojunction photodiode was designed, and its main parameters of the device such as spectral responsivity, dark current density were simulated using Silvaco-TCAD software. The simulation results show that the Mg2Si/Si pin heterojunction photodiode is more sensitive in the spectral range of 0.6—1.5 μm than Mg2Si/Si pn heterojunction photodiode. The peak wavelength of the photodiode is 1.11 μm and the maximum spectral responsivity is 0.742 A·W-1. The wavelength of 1.31 μm still has a good responsivity of up to 0.53 A·W-1. Dark current density of the pin photodiode is approximately 1×10-6 A·cm-2, which is slight bigger than that of the pn photodiode. The interface-state density of the Mg2Si/Si heterojunction should not exceed 1×1011 cm-2.
John J, Zimmermann L, Merken P, et al. Proceedings of the SPIE, 2003, 4820(1), 453.2 Vandersmissen R, Leuven, Belgiun, et al. Photonik International, 2008, 2, 2.3 Labotz R J, Mason D R. Journal of the Electrochemical Society, 1963, 110(2),127.4 Mahan J E, Vantomme A, Langouche G, et al. Physical Review B, 1996, 54(23), 16965.5 Stella A, Lynch D W. Journal of Physics and Chemistry of Solids, 1964, 25(11), 1253.6 Kato T, Sago Y, Fujiwara H, et al. Applied Physics, 2011, 110(6), 063723.7 Au-Yang M Y, Cohen M L. Physical Review, 1969, 178, 1358.8 Borisenko V E. Semiconducting silicides, Springer, UK, 2000.9 Liao Y F, Fan M H, Xiao Q Q, et al. Applied Surface Science, 2018, 458(15), 360.10 Janega P L, McCaffrey J, Landheer D, et al. Applied Physics Letters, 1988, 53(21), 2056.11 Udono H, Tajima H, Uchikoshi M, et al. Japanese Journal of Applied Physics, 2015, 54(7S2), 07JB06.12 Udono H, Yamanaka Y, Uchikoshi M. Journal of Physics and Chemistry of Solids, 2013, 74(2), 311.13 El-Amir A A M, Ohsawaa T, Nabatame T, et al. Materials Science in Semiconductor Processing, 2019, 91, 222.14 Sze S M, Ng K K. Physics of semiconductor devices, 3rd edition, Wiley, US, 2006.15 Madelung O. Semiconductors: Data handbook, 3rd edition, Springer, Germany, 2004.16 Deng Q, Wang Z, Wang S G, et al. Solar Energy, 2017, 158, 654.17 Sekino K, Midonoya M, Udono H, et al. Physics Procedia, 2011, 11, 171.18 Piprek J. Semiconductor optoelectronic devices, 2nd edition, Academic Press, UK, 2003.19 Banhart J, Lay M D H, Hill A J, et al. Physical Review B, 2011, 83(1), 014101.20 Cuevas A, Basore P A, Giroult-Matlakowski G, et al. Journal of Applied Physics, 1996, 80(6), 3370.21 Martin A G. Solar Energy Materials & Solar Cells, 2008, 92(11), 1305.22 Han X, Shao G. Journal of Materials Chemistry C, 2014, 3, 530.23 Libertino S, Benton J L, Jacobson D C, et al. Applied Physics Letters, 1997, 71(3), 389.24 Helms C R, Deal B E. The physics and chemistry of SiO2 and the Si-SiO2 interface, Stanford University Press, US, 1993.25 Stirling A, Pasquarello A, Charlier J C, et al. Physical Review Letters, 2000, 85(13), 2773.26 Wang Y, Wang X N, Mei Z X, et al. Journal of Applied Physics, 2007, 102(12), 16102.27 Hansch W, Vogelsang T, Kircher R, et al. Solid State Electronics, 1989, 32(10), 839.28 He J J, Zhang T J, Tang P, et al. Electrochimica Acta, 2014, 125, 218.