Please wait a minute...
材料导报  2019, Vol. 33 Issue (1): 27-39    https://doi.org/10.11896/cldb.201901003
  生物医学工程领域的高技术关键材料 |
生物医用材料表面高分子基涂层的功能化构筑
赵鸣岐, 黄威嫔, 胡米, 任科峰, 计剑
浙江大学高分子科学与工程学系,高分子合成与功能构造教育部重点实验室,杭州 310027
Functional-polymer-based Coatings for Biomedical Materials’ Surface
ZHAO Mingqi, HUANG Weipin, HU Mi, REN Kefeng, JI Jian
Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027
下载:  全 文 ( PDF ) ( 3154KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 生物医用材料是为生物和医用相关领域使用而设计并制备的功能材料。随着社会的快速发展,人们对生活水平的要求相应提高,并伴随着医疗水平的不断提高和材料科学领域的高速发展,生物医用材料在人类社会生活中的应用越来越广泛。例如,在过去的几十年里,人工髋关节和膝关节植入物的数量显著增加;血管支架、心脏瓣膜、血管移植物和其他植入装置被广泛用于挽救生命和提高患者的生活质量;各种非植入的、短期使用的导管和固定螺钉等生物医用装置也在临床中广泛使用。
   生物医用材料作为一种人类生命和健康密切相关的功能材料,应当满足良好的生物相容性和具有一定的生物功能性,例如不会引起生理系统的严重排斥等。当生物材料与生命体例如细胞、组织、微生物等相接触时,材料的表面首当其冲,因此其在生物材料的综合性能中扮演着极为关键的角色。通过对材料表面做一定的处理或特定修饰,改变材料表面物理、化学或生物性能,就有可能在材料表面引发特殊的生物反应,促进或影响材料与生物体之间的作用,从而有可能获得促进细胞活性、组织修复或再生的功能。因此,生物材料的表面功能化研究已成为生物医用材料研究和发展的一个热点和重要领域。
   近年来,抗菌功能、药物负载以及细胞行为调控等功能是生物材料表面功能化构筑的重要研究方向,在材料表面构筑各种功能涂层是重要的策略之一。在抗菌涂层方面,经典的研究集中在抗黏附、接触杀菌以及释放杀菌分子的设计上,但新型的抗菌策略也不断发展,例如光热杀菌以及动态响应抑菌等。在药物负载传递方面,层层组装技术是一种被用来制备各种药物涂层的重要技术手段,组装单元的多样性为层层组装构建药物控释涂层的多样化提供了良好的基础。在细胞行为调控方面,基于层层组装的材料表面理化性能调控以及生物活性分子的固定,能够对包括黏附、铺展、迁移、增殖分化等细胞行为产生关键性的影响。
   本文归纳了当前生物医用材料表面功能化构筑的研究进展,分别从抗菌表面、药物负载传递、细胞行为调控等三个方面进行介绍,分析了在具体的功能化应用中生物医用材料表面面临的问题以及目前的功能化修饰方法,并展望了其应用前景,以期为制备具有更优化、更高效实际应用的生物医用材料表面提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵鸣岐
黄威嫔
胡米
任科峰
计剑
关键词:  生物医用材料  表面  高分子基涂层  功能化  抗菌  药物传递  细胞调控  层状组装膜    
Abstract: As the name implies, biomedical materials are the functional materials for the biological and medical application. With the rapid development of society and people’s living standards, as well as the rapid progress in medical technology and material science, biomedical materials have been applied more and more widely in human life. For example, the number of hip and knee implants has increased significantly in the past few decades. Meanwhile, extensive applications cover a broad range and include stents, heart valves, vascular grafts and other implants to save lives and improve the quality of life of patients. Various non-implantable, short-term use of catheters and fixation screws and other biomedical devices are also widely used in clinical practice.
Biomedical materials which is related to human life and health should meet the requirements of good biocompatibility and certain biological functions, such as not causing serious rejection of physiological systems. When the biomedical materials come into physiological environment, the surface of materials interact with cells, tissues and microorganism first, therefore, the function of the material surface plays a crucial role in the comprehensive performance of biomaterials. By certain treatment or specific modification of the material surface and changing the physical, chemical or biological properties of the material surface, it is possible to trigger a special biological reaction on the material surface and influence the interaction between the material and the organism, so as to obtain the functional surfaces promoting cell activity, tissue repair or regeneration. Therefore, the functional construction of the biomaterial surface has become a hot and important field in the research and development of biome-dical materials.
In recent years, antimicrobial surface, drug loading and cell behavior regulation are important research directions for the functional construction of biomaterials. One of the important strategies is to build functional coatings on the surface of biomaterials. In respect of antibacterial coating, classical researches focus on the design of anti-adhesion, contact killing and biocide leaching surface, and researchers also have made further improvement about new antibacterial strategies, such as photothermal bacterial lysis and smart antibacterial surface. As for drug delivery, layer by layer assembly is an important technology to prepare various drug delivery coatings. The diversity of assembly units provides a good foundation for the diversity of drug delivery coatings. In the aspect of cell behavior regulation, the design of physical and chemical properties of material surface and the fixation of biological active molecules can have a key impact on cell behavior including adhesion, spreading, migration, proliferation and differentiation.
This review offers a retrospection of the research efforts with respect to the functional design of the biomedical materials, which is respectively from the antibacterial surface, drug delivery and cell behavior regulation. We then pay attention to the challenges and problems in specific functional applications. We have confidence that biomedical materials would be in a better position now, a better position to be more optimal and more efficient and prosper for the future.
Key words:  biomedical materials    surface    polymer-based coating    functionalization    antibacterial    drug delivery    cell behavior regulation    layer-by-layer assembly
               出版日期:  2019-01-10      发布日期:  2019-01-24
ZTFLH:  TB34  
  R318  
基金资助: 国家重点研发计划专项(2017YFB0702500);国家自然科学基金(51573162);浙江省科技计划项目(2016C54003);中央高校基本科研业务费专项资金资助(2017XZZX001-03B);高等学校学科创新引智计划(B16042)
作者简介:  赵鸣岐,2016年6月毕业于浙江大学,获得工学学士学位。任科峰,浙江大学高分子科学与工程学系副教授、博士研究生导师。计剑,浙江大学高分子科学与工程学系教授、博士研究生导师, renkf@zju.edu.cn。
引用本文:    
赵鸣岐, 黄威嫔, 胡米, 任科峰, 计剑. 生物医用材料表面高分子基涂层的功能化构筑[J]. 材料导报, 2019, 33(1): 27-39.
ZHAO Mingqi, HUANG Weipin, HU Mi, REN Kefeng, JI Jian. Functional-polymer-based Coatings for Biomedical Materials’ Surface. Materials Reports, 2019, 33(1): 27-39.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201901003  或          http://www.mater-rep.com/CN/Y2019/V33/I1/27
1 Vasilev K, Cook J, Griesser H J. Expert Review of Medical Devices,2009,6(5),553.2 Pavlukhina S, Sukhishvili S. Advanced Drug Delivery Reviews,2011,63(9),822.3 Zheng X T, Yu L, Li P, et al. Advanced Drug Delivery Reviews,2013,65(11-12),1556.4 Al Thaher Y, Latanza S, Perni S, et al. Journal of Colloid and Interface Science,2018,526,35.5 Yuan Weiyong, Wang Huili, Li Changming. Advanced Function Mate-rials,2012,22,1932.6 Richardson J J, Bjornmalm M, Caruso F. Science,2015,348(6233),2491.7 Zelikin A N. ACS Nano,2010,4,2494.8 Organization W H. Australasian Medical Journal,2014,7(5),238.9 Ciofu O, Rojo-Molinero E, Macia M D, et al. APMIS,2017,125(4),304.10 Lichter J A, Van Vliet K J, Rubner M F. Macromolecules,2009,42(22),8573.11 Hasan J, Crawford R J, Ivanova E P. Trends in Biotechnology,2013,31(5),295.12 Katsikogianni M, Missirlis Y F. European Cells and Materials,2004,8,37.13 Albert T, Poortingaa R B, et al. Surface Science Reports,2002,47,1.14 Park K D, Kim Y S, Han D K, et al. Biomaterials,1998,19(7-9),851.15 Al-Ani A, Pingle H, Reynolds N P, et al. Polymers,2017,9(12),343.16 Kolewe K W, Zhu J, Mako N R, et al. ACS Applied Materials & Interfaces,2018,10(3),2275.17 Ozcelik B, Ho K K K, Glattauer V, et al. ACS Biomaterials Science & Engineering,2016,3(1),78.18 Fischer M, Vahdatzadeh M, Konradi R, et al. Biomaterials,2015,56,198.19 Jeong S H S. Journal of Nanoscience and Nanotechnology,2010,10,1.20 Wang B L, Wang J L, Li D D, et al. Applied Surface Science,2012,258(20),7801.21 Wang B L, Liu X S, Ji Y, et al. Carbohydrate Polymers,2012,90(1),8.22 Fu J, Ji J, Yuan W, et al. Biomaterials,2005,26(33),6684.23 Fu J, Ji J, Fan D, et al. Journal of Biomedical Materials Research Part A,2006,79(3),665.24 Wang B L, Ren K F, Chang H, et al. ACS Applied Materials & Interfaces,2013,5(10),4136.25 Kwon H J, Lee Y, Phuong L T, et al. Acta Biomaterialia,2017,61,169.26 Liu P, Huang T, Liu P, et al. Jounal of Colloid and Interface Science,2016,480,91.27 Sun Y, Chen C, Xu H, et al. Applied Surface Science,2017,419,642.28 Wang Y, Subbiahdoss G, Swartjes J, et al. Advanced Functional Mate-rials,2011,21(20),3916.29 Keefe A J, Jiang S. Nature Chemistry,2011,4(1),59.30 Smith R S, Zhang Z, Bouchard M, et al. Science Translational Medicine,2012,4(153),153.31 Ren T, Yang M, Wang K, et al. ACS Applied Materials & Interfaces,2018,10(30),25717.32 Qian H, Li M, Li Z, et al. Materials Science & Engineering C-Materials for Biological Applications,2017,80,566.33 Hizal F, Rungraeng N, Lee J, et al. ACS Applied Materials & Interfaces,2017,9(13),12118.34 Yang H, You W, Shen Q, et al. RSC Advances,2014,4(6),2793.35 Kaur R, Liu S. Progress in Surface Science,2016,91(3),136.36 Yuan W, Wei J, Lu H, et al. Chemical Communications,2012,48(54),6857.37 Pranantyo D, Xu L Q, Kang E T, et al. Biomacromolecules,2018,19(6),2156.38 Jiao Y, Niu L N, Ma S, et al. Progress in Polymer Science,2017,71,53.39 Fan X L, Hu M, Qin Z H, et al. ACS Applied Materials & Interfaces,2018,10(12),10428.40 Yeroslavsky G, Girshevitz O, Foster-Frey J, et al. Langmuir,2015,31(3),1064.41 Lakshmaiah Narayana J, Chen J Y. Peptides,2015,72,88.42 Gu J, Su Y, Liu P, et al. ACS Applied Materials & Interfaces,2017,9(1),198.43 Gao C, Wang Y, Han F, et al. Journal of Materials Chemistry B,2017,5(47),9326.44 Durán N, Durán M, de Jesus M B, et al. Nanomedicine: Nanotechnology, Biology and Medicine,2016,12(3),789.45 Xie Y, Tang C, Wang Z, et al. Journal of Materials Chemistry B,2017,5(34),7186.46 Liu R, Chen X, Chakraborty S, et al. Journal of the American Chemical Society,2014,136(11),4410.47 Liu R, Chen X, Falk S P, et al. Journal of the American Chemical Society,2014,136(11),4333.48 Liu R, Chen X, Falk S P, et al. Journal of the American Chemical Society,2015,137(6),2183.49 Ding X, Duan S, Ding X, et al. Advanced Functional Materials,2018,28(40),1802140.50 Wessels S, Ingmer H. Regulatory Toxicology and Pharmacology,2013,67(3),456.51 Lei W X, Chen X C, Hu M, et al. Journal of Materials Chemistry B,2016,4(38),6358.52 Campoccia D, Montanaro L, Arciola C R. Biomaterials,2013,34(34),8533.53 Cloutier M, Mantovani D, Rosei F. Trends in Biotechnology,2015,33(11),637.54 Byun E, Lee H. Journal of Nanoscience and Nanotechnology,2014,14(10),7395.55 Cao M, Zhao W, Wang L, et al. ACS Applied Materials & Interfaces,2018,10(29),24937.56 Lutzke A, Neufeld B H, Neufeld M J, et al. Journal of Materials Chemistry B,2016,4(11),1987.57 Brisbois E J, Bayliss J, Wu J, et al. Acta Biomaterialia,2014,10(10),4136.58 Singha P, Pant J, Goudie M J, et al. Biomaterials Science,2017,5(7),1246.59 Xu J, Xu N, Zhou T, et al. Surface and Coatings Technology,2017,320,608.60 Moreno-Couranjou M, Mauchauffé R, Bonot S, et al. Journal of Materials Chemistry B,2018,6(4),614.61 Hu D, Li H, Wang B, et al. ACS Nano,2017,11(9),9330.62 Khantamat O, Li C H, Yu F, et al. ACS Applied Materials & Interfaces,2015,7(7),3981.63 Fan X, Yang F, Nie C, et al. ACS Applied Materials & Interfaces,2018,10(1),296.64 Qiao Y, Ma F, Liu C, et al. ACS Applied Materials & Interfaces,2018,10(1),193.65 Hui L, Auletta J T, Huang Z, et al. ACS Applied Materials & Interfaces,2015,7(19),10511.66 Chiang W L, Lin T T, Sureshbabu R, et al. Journal of Controlled Release,2015,199,53.67 Messersmith H L. Science,2007,318,426.68 Liu Y, Ai K, Liu J, et al. Advanced Materials,2013,25(9),1353.69 Lei W, Ren K, Chen T, et al. Advanced Materials Interfaces,2016,3(22),1600767.70 Wei T, Tang Z, Yu Q, et al. ACS Applied Materials & Interfaces,2017,9(43),37511.71 Qu Y, Wei T, Zhao J, et al. Journal of Materials Chemistry B,2018,6(23),3946.72 Li X, Wu B, Chen H, et al. Journal of Materials Chemistry B,2018,6(26),4274.73 Xie Y, Chen S, Qian Y, et al. Materials Science & Engineering C-Mate-rials for Biological Applications,2018,84,52.74 Wang B, Xu Q, Ye Z, et al. ACS Applied Materials & Interfaces,2016,8(40),27207.75 Shi Z Q, Cai Y T, Deng J, et al. ACS Applied Materials & Interfaces,2016,8(36),23523.76 Yan S, Shi H, Song L, et al. ACS Applied Materials & Interfaces,2016,8(37),24471.77 Lvov Yu, Decher G, Sukhorukov G.Macromolecules, 1993,26,5396.78 Frank Caruso, Yoshio Okahata, et al. Langmuir, 1997,13,3427.79 Schwinte P, Voegel J C, Picart C, et al. Journal of Physical Chemistry B,2001,105(47),11906.80 Ren K, Ji J, Shen J. Macromolecular Rapid Communications ,2005,26(20),1633.81 Ren K, Ji J, Shen J. Biomaterials,2006,27(7),1152.82 Ren K, Ji J, Shen J.Bioconjugate Chemistry,2006,17(1),77.83 Ren K. Analytica Chimica Acta,2011,41(2),239.84 Mao Z, Ma L, Zhou J, et al. Bioconjugate Chemistry,2005,16(5),1316.85 Lin Q, Yan J, Qiu F, et al. Journal of Biomedical Materials Research Part A,2011,96(1),132.86 Chuang Helen F, Smith R C, et al. Biomacromolecules,2008,9(6),1600.87 Wood K C, Zacharia N S, Schmidt D J, et al. Proceedings of the National Academy of Sciences of the United States of America,2008,105(7),2280.88 Shen L, Wang B, Wang J, et al. ACS Appllied Materials & Interfaces,2012,4(9),4476.89 Guyomard A, Dé E, Jouenne T, et al. Advanced Functional Materials,2008,18(5),758.90 Phuong M. Nguyen N S Z, et al. Chemistry of Materials,2007,19,5524.91 Ning Ma H Z, Bo Song, et al. Chemistry of Materials,2005,17(20),5065.92 Bo Qi X T, Yue Zhao. Macromolecules,2006,39,5714.93 Byeong-Su Kim, Sang Wook P, et al. ACS Nano,2008,2(2),386.94 Wang L, Ren K F, Wang H B, et al. Colloids and Surfaces B Biointerfa-ces,2015,125,127.95 Thierry B, Kujawa P, Tkaczyk C, et al. Journal of the American Chemistry Society,2005,127(6),1626.96 Cao Y, He W. Acta Biomaterials,2013,9(1),4558.97 Aure′lie Guyomard B N, Guy Muller,Karine Glinel. Langmuir,2006,22,2281.98 Wang L, Chen D, Sun J. Langmuir,2009,25(14),7990.99 Wang L, Wang X, Xu M, et al. Langmuir,2008,24(5),1902.100 Chung A J, Rubner M F. Langmuir,2002,18(4),1176.101 Aure′ lie Guyomard G M, Karine Glinel. Macromolecules,2005,38,5737.102 Hu X, Ji J.Biomacromolecules,2011,12(12),4264.103 Li D D, Ren K F, Chang H, et al. Langmuir,2013,29(46),14101.104 Tang Z, Wang Y, Podsiadlo P, et al. Advanced Materials,2006,18(24),3203.105 Chen X C, Ren K F, Lei W X, et al. ACS Applied Materials & Interfaces,2016,8(7),4309.106 Goulet-Hanssens A, Sun K L W, Kennedy T E, et al. Biomacromolecules,2012,13(9),2958.107 Chaudhuri O, Gu L, Darnell M, et al. Natural Communications,2015,6,7365.108 Lin Q K, Hou Y, Ren K F, et al. Thin Solid Films,2012,520(15),4971.109 Lin Q K, Hou Y, Xu X, et al. International Journal of Polymeric Materials and Polymeric Biomaterials,2015,64(2),99.110 Lin Q K, Ding X, Qiu F Y, et al. Biomaterials,2010,31(14),4017.111 Chang H, Hu M, Zhang H, et al. ACS Applied Materials & Interfaces,2016,8(23),14357.112 Chang H, Zhang H, Hu M, et al. Colloids and surfaces B, Biointerfa-ces,2017,149,379.113 Guillot R, Gilde F, Becquart P, et al. Biomaterials,2013,34(23),5737.114 Crouzier T, Fourel L, Boudou T, et al. Advanced Materials,2011,23(12),111.115 Dalonneau F, Liu X Q, Sadir R, et al. Biomaterials,2014,35(15),4525.116 Liu X Q, Fourel L, Dalonneau F, et al. Biomaterials,2017,127,61.117 Gentile P, Ferreira A M, Callaghan J T, et al. Advanced Healthcare Materials,2017,6(8),1601182.118 Gardel M L, Schneider I C, Aratyn-Schaus Y, et al. Annual Review of Cell and Developmental Biology,2010,26,315.119 Zanina N, Mora L, Othmane A, et al. Biotechnology Bioprocess Engineering,2013,18(1),144.120 Huang R, Li W Z, Lv X X, et al. Biomaterials,2015,53,58.121 Dai B Y, Pan Q W, Li Z H, et al. Stem Cells International,2016,4796578,1.122 Xing J C, Mei T N, Luo K Y, et al. Acta Biomaterials,2017,53,470.123 Gribova V, Gauthier-Rouviere C, Albiges-Rizo C, et al. Acta Biomate-rials,2013,9(5),6468.124 Gribova V, Pignot-Paintrand I, Fourel L, et al. ACS Biomaterials Science & Engineering,2016,2(3),415.125 Kulkarni A, Diehl-Jones W, Ghanbar S, et al. Journal of Biomaterials Application,2014,29(2),278.126 Gorouhi F, Shah N M, Raghunathan V K, et al. Journal of Investigative Dermatology,2014,134(6),1757.127 Ye X F, Wang H Z, Zhou J X, et al. Plos One,2013,8(1),e54622.128 Goncalves R M, Antunes J C, Barbosa M A. European Cells & Mate-rials,2012,23,249.129 Sun C B, Teng W Q, Cui J T, et al. Colloid Surface B,2014,113,33.130 Dierich A, Le Guen E, Messaddeq N, et al. Advanced Materials,2007,19(5),693.131 Hu Y, Cai K Y, Luo Z, et al. Biomaterials,2012,33(13),3515.132 Wang Z M, Wang K F, Lu X, et al. Advanced Healthcare Materials,2015,4(6),927.133 Cai P, Xue Z Y, Qi W, et al. Colloid Surface A,2013,434,110.134 Hu Y, Cai K Y, Luo Z, et al. Biomaterials,2009,30(21),3626.135 Hu Y, Cai K, Luo Z, et al. Biomaterials,2012,33(13),3515.136 Kumorek M, Kubies D, Filova E, et al. Plos One,2015,10(5),e0125484.137 Zhou K, Thouas G, Bernard C, et al. Nanomedicine-Uk,2014,9(8),1239.138 Cardoso A P, Goncalves R M, Antunes J C, et al. Acta Biomaterials,2015,23,157.139 Tsai W B, Chen R P Y, Wei K L, et al. Acta Biomaterials,2009,5(9),3467.140 Tsai W B, Chen R P Y, Wei K L, et al. Journal of Biomaterials Science-Polymer Edition,2010,21(3),377.141 Huang Y, Luo Q J, Li X D, et al. Acta Biomaterials,2012,8(2),866.142 Shu Y, Ou G M, Wang L, et al. Journal of Nanomaterials,2011,5,1.143 Zhan J, Luo Q J, Huang Y, et al. International Journal of Minerals Metallurgy and Materials,2014,21(9),925.144 Gregurec D, Wang G C, Pires R H, et al. Journal of Materials Chemistry B,2016,4(11),1978.145 Rabineau M, Flick F, Mathieu E, et al. Biomaterials,2015,37,144.146 Sailer M, Sun K L W, Mermut O, et al. Biomaterials,2012,33(24),5841.147 Almodovar J, Crouzier T, Selimovic S, et al. Lab on a Chip,2013,13(8),1562.148 Boudou T, Crouzier T, Nicolas C, et al. Macromolecular Bioscience,2011,11(1),77.149 Schneider A, Francius G, Obeid R, et al. Langmuir,2006,22(3),1193.150 Ren K F, Fourel L, Rouviere C G, et al. Acta Biomaterials,2010,6(11),4238.151 Monge C, Saha N, Boudou T, et al. Advanced Functional Materials,2013,23(27),3432.152 Sun Y X, Ren K F, Wan J L, et al. ACS Applied Materials & Interfaces,2013,5(11),4597.153 Wang L M, Chang H, Zhang H, et al. Journal of Materials Chemistry B,2015,3(38),7546.154 Zhao Y X, Ren K F, Li B C, et al. Chemical Journal of Chinese Universities,2014,35(8),1822.155 Chang G X, Ren K F, Zhao Y X, et al. E-Polymers,2014,14(5),297.156 Chang H, Zhang H, Hu M, et al. Biomater Science,2015,3(2),352.157 Hu M, Chang H, Zhang H, et al. Advanced Healthcare Materials,2017,6,1601410.158 Han L L, Mao Z W, Wu J D, et al. Biomaterials,2013,34(4),975.159 Kirchhof K, Andar A, Yin H B, et al. Lab on a Chip,2011,11(19),3326.160 Martinez J S, Lehaf A M, Schlenoff J B, et al. Biomacromolecules,2013,14(5),1311.161 Ren K F, Crouzier T, Roy C, et al. Advanced Functional Materials,2008,18(9),1378.162 Saums M K, Wang W F, Han B, et al. Langmuir,2014,30(19),5481.163 Zhang H, Chang H, Wang L M, et al. Biomacromolecules,2015,16(11),3584.164 Gaudiere F, Morin-Grognet S, Bidault L, et al. Biomacromolecules,2014,15(5),1602.165 Chien H W, Tan S F, Wei K L, et al. Colloid Surface B,2011,88(1),297.166 Samuel R E, Shukla A, Paik D H, et al. Biomaterials,2011,32(30),7491.
[1] 吴成宝, 林列书, 李慎兰, 盖国胜, 杨玉芬. 表面纳米修饰重质碳酸钙的制备及形貌特征和粒度表征[J]. 材料导报, 2019, 33(z1): 149-152.
[2] 张燕. 一步法制备无表面修饰剂花状金纳米颗粒及其表面增强拉曼散射性能研究[J]. 材料导报, 2019, 33(z1): 314-317.
[3] 张哲轩, 周再峰, 山泉, 李祖来, 蒋业华, 张飞. 表面钨合金化对高铬铸铁组织和硬度的影响[J]. 材料导报, 2019, 33(z1): 362-365.
[4] 施方长, 王玉, 高延敏. 改性含N小分子用于金属表面锈层处理对环氧涂层防腐性能的研究[J]. 材料导报, 2019, 33(z1): 523-526.
[5] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[6] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹, 马懿泽. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
[7] 杨帆, 马建中, 鲍艳. 纳米纤维素及其在水凝胶中的研究进展[J]. 材料导报, 2019, 33(7): 1227-1233.
[8] 周莹, 肖利吉, 姚丽, 徐祖顺. 自修复型超疏水材料研究进展[J]. 材料导报, 2019, 33(7): 1234-1242.
[9] 王岚, 李冀, 桂婉妹. 表面活性剂对温拌胶粉改性沥青高低温性能的影响[J]. 材料导报, 2019, 33(6): 986-990.
[10] 王恩胜, 余丽萍, 廉世勋, 周文理. 全无机钙钛矿量子点的研究进展[J]. 材料导报, 2019, 33(5): 777-783.
[11] 王晖, 屈绍波. 小型化频率选择表面研究现状及其应用进展[J]. 材料导报, 2019, 33(5): 881-893.
[12] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[13] 丁燕红, 薛鹏鹤, 李岩, 马叙. 自由面平整化非晶合金Fe67Co18Si11B4的软磁性能[J]. 材料导报, 2019, 33(4): 586-589.
[14] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
[15] 尹晓丽, 于思荣, 胡锦辉. Ni3S2微纳米结构超疏水表面的制备及耐蚀性能[J]. 材料导报, 2019, 33(20): 3372-3376.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed