Please wait a minute...
CLDB  2017, Vol. 31 Issue (9): 152-157    https://doi.org/10.11896/j.issn.1005-023X.2017.09.021
  新材料新技术 |
海泡石基金属氧化物复合材料的合成及其光催化性能研究进展*
刘蕊蕊1, 冀志江1, 谭建杰2, 王静1, 张琎珺1, 廖祥3
1 中国建筑材料科学研究总院,绿色建筑材料国家重点实验室,北京 100024;
2 湘潭源远海泡石新材料股份有限公司,湘潭411100;
3 湘潭海泡石科技有限公司,湘潭411100
Advances in Preparation and Photocatalytic Properties of Sepiolite-based Metal Oxide Compounds
LUI Ruirui1, JI Zhijiang1, TAN Jianjie2, WANG Jing1, ZHANG Jinjun1, LIAO Xiang3
1 State Key Laboratory of Green Building Materials, China Building Materials Academy, Beijing 100024;
2 Xiangtan Yuan Yuan Sepiolite New Materials Co., Ltd., Xiangtan 411100;
3 Xiangtan Sepiolite Technology Co., Ltd., Xiangtan 411100
下载:  全 文 ( PDF ) ( 1672KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 海泡石比表面积大、孔隙率高,且表面具有一定量的硅羟基基团,这可为其负载金属氧化物如TiO2、ZnO、Fe2O3等提供更多的活性位点,因而它可以作为一种有效载体来制备具有较好吸附性和催化性的复合材料。主要介绍了海泡石基金属氧化物复合材料的不同制备方法,如溶胶-凝胶法、沉淀法、浸渍法;概述了其在提高比表面积、孔容积以及吸附性能等方面具有的优势;并综述了其在液相和气相光催化领域中的应用;介绍了其光催化性能的影响因素及最佳降解效果;最后对其作为生态环境材料的应用进行了前景展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘蕊蕊
冀志江
谭建杰
王静
张琎珺
廖祥
关键词:  海泡石  海泡石基金属氧化物  海泡石/TiO2  纳米复合材料  光催化    
Abstract: Sepiolite possesses huge specific surface area, high porosity and a certain number of silicon hydroxyl groups on its surface. These groups provide more active sites for the combination of sepiolite with metal-oxides such as TiO2, ZnO, Fe2O3 and so on. Therefore, silicate can be used as an attractive carrier for the composites with favorable adsorbability and catalysis. This paper mainly introduces different preparation methods of sepiolite-based metal oxide compounds such as sol-gel, precipitation, impregnation methods. The unique advantages such as improvement of specific surface area, pore volume and adsorptive capability are discussed. Furthermore, the application of sepiolite-based metal oxide compounds in liquid-phase and gas-phase photocatalysis area are reviewed, and the best degradation effect of these materials and some factors affecting the photocatalytic performance are introduced. Finally, a future development prospect for sepiolite-based metal oxide compounds as an ecological environment material is proposed.
Key words:  sepiolite    sepiolite-based metal oxide    sepiolite/TiO2    nanocomposites    photocatalysis
出版日期:  2017-05-10      发布日期:  2018-05-03
ZTFLH:  TB33  
基金资助: *国家科技攻关计划(2016YFC0700902)
通讯作者:  冀志江:男,1964年生,博士,教授,博士研究生导师,研究方向为生态环境材料 E-mail:jzj1964@sina.com   
作者简介:  刘蕊蕊:女,1987年生,博士研究生,研究方向为生态环境材料 E-mail:shanqingliuruirui@163.com
引用本文:    
刘蕊蕊, 冀志江, 谭建杰, 王静, 张琎珺, 廖祥. 海泡石基金属氧化物复合材料的合成及其光催化性能研究进展*[J]. CLDB, 2017, 31(9): 152-157.
LUI Ruirui, JI Zhijiang, TAN Jianjie, WANG Jing, ZHANG Jinjun, LIAO Xiang. Advances in Preparation and Photocatalytic Properties of Sepiolite-based Metal Oxide Compounds. Materials Reports, 2017, 31(9): 152-157.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.09.021  或          https://www.mater-rep.com/CN/Y2017/V31/I9/152
[1] Liu J, Zhang G K.Ion-exchange synthesis of one-dimensional Cd2Ge2O6/CdS core-shell composites and their enhanced visible-light photocatalytic activity[J]. Appl Surf Sci,2014,319:291.
[2] Mehrjouei M, Müller S, Möller D.A review on photocatalytic ozonation used for the treatment of water and wastewater[J]. Chem Eng J,2015,263:209.
[3] Liu Y P, Fang L, Lu H D, et al.Highly efficient and stable Ag/Ag3PO4 plasmonic photocatalyst in visible light[J]. Catal Commun,2012,17:200.
[4] Wang H, Yuan X Z, Wu Y, et al.Facile synthesis of amino-functionalized titanium metal-organic frameworks and their superior visible-light photocatalytic activity for Cr(Ⅵ) reduction[J]. J Hazard Mater,2015,286:187.
[5] Pham T, Nguyen-Huy C, Shin E W.Facile one-pot synthesis of nickel-incorporated titanium dioxide/graphene oxide composites: Enhancement of photodegradation under visible-irradiation[J]. Appl Surf Sci,2016,377:301.
[6] Zeng M, Li Y Z, Mao M Y, et al.Synergetic effect between photocatalysis on TiO2 and thermocatalysis on CeO2 for gas-phase oxidation of benzene on TiO2/CeO2 nanocomposites[J]. ACS Catal,2015,5(6):3278.
[7] Xiao F X.Construction of highly ordered ZnO-TiO2 nanotube arrays (ZnO/TNTs) heterostructure for photocatalytic application[J]. ACS Appl Mater Interface,2012,4(12):7055.
[8] Huang Yicao, Zhao Zhefei, Li Shixiong, et al.preparation and photocatalytic Properties of Fe2O3 /TiO2 nanotube arrays[J]. Chinese J Inorg Chem,2015,31(1):133(in Chinese).黄益操, 赵浙菲, 李世雄, 等. Fe2O3/TiO2纳米管阵列的制备及其光催化性能[J]. 无机化学学报,2015,31(1):133.
[9] Liu J, Zhang G K.Recent advances in synthesis and applications of clay-based photocatalysts: A review[J]. Phys Chem Chem Phys,2014,16(18):8178.
[10] Tuler F E, Portela R, Avila P, et al.Development of sepiolite/SiC porous catalytic filters for diesel soot abatement[J]. Microp Mesop Mater,2016,230:11.
[11] Milt V G, Banús E D, Miró E E, et al.Structured catalysts containing Co, Ba and K supported on modified natural sepiolite for the abatement of diesel exhaust pollutants[J]. Chem Eng J,2010,157:530.
[12] Zhu Q W, Zhang Y H, Lv F Z. Cuprous oxide created on sepiolite: Preparation, characterization,photocatalytic activity in treatment of red water from 2,4,6-trinitrotoluene manufacturing[J]. J Hazard Mater,2012,217-218:11.
[13] Tian N, Tian X K, Ma L L, et al.Well-dispersed magnetic iron oxide nanocrystals on sepiolite nanofibers for arsenic removal supported seiolite catalysts[J]. RSC Adv,2015,5:25236.
[14] Neren Ökte A, Elçin Saylnsöz.Characterization and photocatalytic activity of TiO2 supported sepiolite catalysts[J]. Separat Purificat Technol,2008,62:535.
[15] Aranda P, Kun R, Martín-Luengo M A, et al. Titania-sepiolite nanocomposites prepared by a surfactant templating colloidal route[J]. Chem Mater,2008,20:84.
[16] Wang Xiaoyan,Ji Zhijiang,Zhang Liansong, et al.Study of rutile TiO2 in situ supported on crude sepiolite by liquid phase method[J]. J Chinese Ceram Soc,2006,34(8):932(in Chinese).王晓燕,冀志江,张连松,等. 海泡石液相原位负载金红石型TiO2研究[J]. 硅酸盐学报,2006,34(8):932.
[17] Pecharroman C, Esteban-Cubillo A, Montero I, et al.Monodisperse and corrosion-resistant metallic nanoparticles embedded into sepiolite particles for optical and magnetic applications[J]. J Am Ceram Soc,2006,89(10):3043.
[18] Zhang Y L, Wang D J, Zhang G K.Photocatalytic degradation of organic contaminants by TiO2/sepiolite composites prepared at low temperature[J].Chem Eng J,2011,173:1.
[19] Zhang G K, Xiong Q, Xub W, et al.Synthesis of bicrystalline TiO2 supported sepiolite fibers and their photocatalytic activity for degradation of gaseous formaldehyde[J]. Appl Clay Sci,2014,102:231.
[20] Li F F, Dai Y Z, Gong M, et al.Synthesis, characterization of magnetic-sepiolite supported with TiO2, and the photocatalytic perfor-mance over Cr(Ⅵ) and 2,4-dichlorophenol co-existed wastewater[J]. J Alloys Compd,2015,638:435.
[21] Karamanis D, Ökte A N, Vardoulakis E, et al.Water vapor adsorption and photocatalytic pollutant degradation with TiO2-sepiolite nanocomposites[J]. Appl Clay Sci,2011,53:181.
[22] Corma A, Garcia H, Leyva A, et al.Alkali-exchanged sepiolites containing palladium as bifunctional (basic sites and noble metal) catalysts for the Heck and Suzuki reactions[J]. Appl Catal A:Ge-neral,2004,257:77.
[23] Belver C, Aranda P, Ruiz-Hitzky E.Silica-alumina/sepiolite nanoarchitectures[J].J Mater Chem A,2013,1:7477.
[24] Nieto-Suarez M, Palmisano G, Ferrer M L, et al.Self-assembled titania-silica-sepiolite based nanocomposites for water decontamination[J]. J Mater Chem,2009,19:2070.
[25] Bautista F M, Campelo J M, Luna D, et al.Vanadium oxides supported on TiO2-sepiolite and sepiolite: Preparation, structural and acid characterization and catalytic behaviour in selective oxidation of toluene[J]. Appl Catal A,2007,325:336.
[26] Bautista F M, Campelo J M, Luna D, et al.Gas-phase selective oxidation of toluene on TiO2-sepiolite supported vanadium oxides inf-luence of vanadium loading on conversion and product selectivities[J]. Catal Today,2007,128:183.
[27] Bautista F M, Luna D, Luque J, et al.Gas-phase selective oxidation of chloro-and methoxy-substituted toluenes on TiO2-sepiolite supported vanadium oxides[J]. Appl Catal A: General,2009,352:251.
[28] Du Yu, Tang D D, Zhang G K, et al.Facile synthesis of Ag2O-TiO2/sepiolite composites with enhanced visible-light photocatalytic properties[J]. Chinese J Catal,2015,36:2219.
[29] Portela R, Rubio-Marcos F, Leret P, et al.Nanostructured ZnO/sepiolite monolithic sorbents for H2S removal[J]. J Mater Chem A,2015,3:1306.
[30] Shi J X, Liu Y X, Peng Q, et al.ZnO hierarchical aggregates: Solvothermal synthesis and application in dye-sensitized solar cells[J]. Nano Res,2013,6(6):441.
[31] Vilà B, Escribano F, et al.Application of ZnO-functionalised-sepiolite in weaning piglet diets[J]. Livestock Sci,2010,134:232.
[32] Hassan M, Afify A S, Tulliani J M.Synthesis of ZnO nanoparticles onto sepiolite needles and determination of their sensitivity toward humidity, NO2 and H2[J]. J Mater Sci Technol,2016,doi:10.1016/j.jmst.2016.03.008.
[33] Esteban-Cubillo A, Tulliani J M, Pecharroman C, et al.Iron-oxide nanoparticles supported on sepiolite as a novel humidity sensor[J]. J Eur Ceram Soc,2007,27:1983.
[34] Eren E, Gumus H, Ozbay N.Equilibrium and thermodynamic stu-dies of Cu(Ⅱ) removal by iron oxide modified sepiolite[J]. Desalination,2010,262:43.
[35] Li G S, Cheng L J, Zhang B, et al.Novel Bi2O3 loaded sepiolite photocatalyst: Preparation and characterization[J]. Mater Lett,2016,168:143.
[36] Yu S M, Zhai L, et al.Synthesis and structural characterization of magnetite/sepiolite composite and its sorptive properties for Co(Ⅱ) and Cd(Ⅱ)[J]. J Taiwan Institute Chem Eng,2016,59:221.
[37] Uğurlu M, Karaoğlu M H.TiO2 supported on sepiolite: Preparation, structural and thermal characterization and catalytic behaviour in photocatalytic treatment of phenol and lignin from olive mill wastewater[J]. Chem Eng J,2011,166:859.
[38] Xu W G, Liu S F, Lu S X, et al.Photocatalytic degradation in aqueous solution using quantum-sized ZnO particles supported on sepiolite[J]. J Colloid Interface Sci,2010,351:210.
[39] Tang Aidong, Yang Xuehua, Zhang Fang, et al.Synergistic effect of a novel Cu2O/sepiolite composite on the degradation of methyl orange[J]. China Sciencepaper,2013,8(2):81(in Chinese).唐爱东, 杨学华, 张放, 等. 新型Cu2O/海泡石复合材料降解甲基橙的协同效应[J]. 中国科技论文,2013,8(2):81.
[40] Karaǒglu M H, Uğurlu M.Studies on UV/NaOCl/TiO2/sep photocatalysed degradation of reactive red 195[J]. J Hazard Mater,2010,174(1-3):864.
[41] Long Mingce, Cai Jun, Cai Weimin, et al.Design of novel visible light responding semiconductor photocatalysts[J]. Progress Chem,2006,18(9):1065(in Chinese).龙明策, 蔡俊, 蔡伟民, 等. 设计新型可见光响应的半导体光催化剂[J]. 化学进展,2006, 18(9):1065.
[42] Ren Jianmin, Lv Junxiang.Preparation of TiO2/Y2O3/sepiolite and photocatalysis for methyl orange[J]. J Shaoguan University:Nat Sci,2007,28(12):50(in Chinese).任健敏, 吕俊香. TiO2/Y2O3/海泡石复合体的制备及光催化降解甲基橙的研究[J]. 韶关学院学报:自然科学,2007,28(12):50.
[43] Ma Y, Zhang G K.Sepiolite nanofiber-supported platinum nanoparticle catalysts toward the catalytic oxidation of formaldehyde at ambient temperature: Efficient and stable performance and mechanism[J]. Chem Eng J,2016,288:70.
[44] Wang Qing, Cheng Jun, Zhou Xue, et al.Study on preparation and photocatalytic actitity of REE doping TiO2/sepiolite composite[J]. New Chem Mater,2016,44(5):112(in Chinese).王青,程俊,周雪, 等. 稀土元素掺杂TiO2/海泡石复合材料的制备及其性能研究[J]. 化工新型材料, 2016, 44(5):112.
[45] Portela R, Jansson I, Suárez S, et al.Natural silicate-TiO2 hybrids for photocatalytic oxidation of formaldehyde in gas phase[J]. Chem Eng J,DOI:10.1016/j.cej.2016.06.018.
[46] Suárez S, Hewer T L R, et al. Behaviour of TiO2-SiMgOx hybrid composites on the solar photocatalytic degradation of polluted air[J]. Appl Catal B,2011,101:176.
[47] Suárez S, Coronado J M, Portela R, et al.On the preparation of TiO2/sepiolite hybrid materials for the photocatalytic degradation of TCE: Influence of TiO2 distribution in the mineralization[J]. Environ Sci Technol,2008,42:5892.
[48] Rasmussen S B, Portela R, Suárez S, et al.Hybrid TiO2-SiMgOx composite for combined chemisorption and photocatalytic elimination of gaseous H2S[J]. Ind Eng Chem Res,2010,49:6685.
[1] 孔德茹, 刘靖, 杨晓林, 孙冬兰, 张进康. 溶胶-凝胶-燃烧法中双功能络合剂对掺铝氧化锌性能影响的研究[J]. 材料导报, 2025, 39(1): 23100131-7.
[2] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[3] 王海涛, 施宝旭, 赵晓旭, 常娜. 高效降解盐酸四环素的CdS/BiOCl复合光催化剂的制备及性能[J]. 材料导报, 2024, 38(6): 22060180-8.
[4] 刘月琴, 王海涛, 郭建峰, 赵晓旭, 常娜. 不同形貌g-C3N4光催化剂的制备及性能[J]. 材料导报, 2024, 38(4): 22080014-7.
[5] 李冠琼, 梁海欧, 李春萍, 白杰. ZnIn2S4基光催化剂的制备及改性研究进展[J]. 材料导报, 2024, 38(3): 22040272-6.
[6] 林青, 黎水平, 缪志鹏, 丁忆, 梁栋, 王昭, 张小娟. Au@α-Fe2O3纳米棒的制备及光催化性能[J]. 材料导报, 2024, 38(3): 22050040-6.
[7] 朱艳, 刘海龙, 贾仕奎, 李云峰, 首浩. Fe3O4/g-C3N4复合异质结的构建及紫外光降解罗丹明B[J]. 材料导报, 2024, 38(23): 23080020-7.
[8] 徐杨, 刘成宝, 郑磊之, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. 高结晶度g-C3N4在光催化领域的研究进展[J]. 材料导报, 2024, 38(21): 23060180-13.
[9] 刘京津, 赵华, 李会鹏, 蔡天凤. 氧磷共掺杂二维石墨相氮化碳的制备及光催化性能[J]. 材料导报, 2024, 38(21): 23070238-7.
[10] 莫日格吉乐, 包莫日根, 白璐, 谢兵, 于晓丽, 曹鸿璋, 赵丹蕾, 赵斯琴. CeO2光催化原理及改性研究进展[J]. 材料导报, 2024, 38(21): 23080150-6.
[11] 陈俊林, 常春. 具有三维花球状结构的钼酸铋在模拟太阳光照射下降解双氯芬酸钠[J]. 材料导报, 2024, 38(20): 23050078-9.
[12] 刘睿琦, 孙善富, 程鹏飞, 王莹麟, 郝熙冬. 光/电催化废塑料升级再造高附加值化学品研究进展[J]. 材料导报, 2024, 38(20): 23060226-7.
[13] 王雪怡, 王智远, 余伟, 周冰鑫, 徐榕, 杨兴东, 何辉超, 贾碧. 高压辅助溶胶-凝胶法制备La掺杂TiO2光催化剂及其可见光降解甲基橙研究[J]. 材料导报, 2024, 38(2): 22080236-5.
[14] 梁红玉, 王斌, 陆光. 新型氮空位g-C3N4/Cu2(OH)2CO3异质结的构建及广谱光催化降解有机染料的性能[J]. 材料导报, 2024, 38(19): 23070195-6.
[15] 李思盈, 周超. 海泡石纤维增强二氧化硅气凝胶的制备及性能[J]. 材料导报, 2024, 38(19): 23030233-9.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed