Please wait a minute...
材料导报  2024, Vol. 38 Issue (19): 23070195-6    https://doi.org/10.11896/cldb.23070195
  无机非金属及其复合材料 |
新型氮空位g-C3N4/Cu2(OH)2CO3异质结的构建及广谱光催化降解有机染料的性能
梁红玉1,*, 王斌2, 陆光3
1 辽宁石油化工大学环境与安全工程学院,辽宁 抚顺 113001
2 上海蓝滨石化设备有限责任公司,上海 201518
3 辽宁石油化工大学土木工程学院,辽宁 抚顺 113001
Construction of Nitrogen Vacancies-doped g-C3N4/Cu2(OH)2CO3 Heterojunction with Outstanding Wide-spectrum-driven Photocatalytic Organic Dyestuff Degradation Ability
LIANG Hongyu1,*, WANG Bin2, LU Guang3
1 School of Environmental and Safety Engineering, Liaoning Petrochemical University, Fushun 113001, Liaoning, China
2 Lanpec Technologies Limited, Shanghai 201518, China
3 School of Civil Engineering, Liaoning Petrochemical University, Fushun 113001, Liaoning, China
下载:  全 文 ( PDF ) ( 11213KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究设计了一款不含贵金属、宽光谱响应的氮空位异质结催化剂g-C3N4/Cu2(OH)2CO3(VCN/Cu),并考察了其对罗丹明B(RhB)的光催化降解性能。采用扫描电镜/透镜(SEM/TEM)、X射线衍射光谱(XRD)、X光电子能谱(XPS)、荧光光谱(PL)等分析手段对产物形貌、结构、元素能态等性质进行了表征。结果表明,VCN/Cu异质结催化剂对250~1 800 nm的光均有较强吸收。VCN/Cu光催化降解RhB最大反应速率常数达到0.052 min-1,分别是Cu2(OH)2CO3和g-C3N4的12.7倍和5.8倍,且具有优异的光催化稳定性。Cu2(OH)2CO3一方面作为红外光吸收材料,提高了对太阳光全光谱的利用率;另一方面与VCN构成异质结,提高了光生电子-空穴的分离效率,同时VCN上的氮空位强化了对光生电子的捕获、对氧的吸附及还原作用。此外,本研究还考察了VCN/Cu异质结催化剂光催化降解RhB的机理。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁红玉
王斌
陆光
关键词:  石墨相氮化碳  碱式碳酸铜  有机染料  氮空位  光催化    
Abstract: In this study, a wide-spectrum-driven g-C3N4/Cu2(OH)2CO3(VCN/Cu) heterojunction catalyst with nitrogen vacancies was synthesized and the photocatalytic organic dyestuff degradation ability was investigated. The morphologies, crystal phases, element energy states and other properties of as-prepared catalysts were characterized by TEM/SEM, XRD, UV-Vis, XPS, PL, et al. The results indicate that the VCN/Cu heterojunction catalyst shows strong light absorption in the region of 250—1 800 nm, the reaction rate constant of photocatalytic RhB degradation for VCN/Cu heterojunction arrives 0.052 min-1, which is 12.7 times and 5.8 times higher than that of neat Cu2(OH)2CO3 and g-C3N4, as well as perfect photocatalytic stability. Nitrogen vacancies might not only promote interfacial charge transfer but also act as active sites to trap and reduce O2 molecules. Moreover, the mechanism of photocatalytic RhB degradation by VCN/Cu catalyst was studied.
Key words:  g-C3N4    Cu2(OH)2CO3    organic dyestuff    nitrogen vacancies    photocatalysis
出版日期:  2024-10-10      发布日期:  2024-10-23
ZTFLH:  O641  
  O649  
基金资助: 辽宁省科技厅自然科学基金(2019-ZD-0063)
通讯作者:  *梁红玉,通信作者,辽宁石油化工大学环境与安全工程学院副教授、硕士研究生导师。1991年深圳大学应用化学专业毕业后到辽宁石油化工大学工作至今。2005年辽宁石油化工大学环境工程专业硕士毕业,2018年东北大学冶金物理化学专业博士毕业。目前主要从事纳米复合材料、环境污染控制等方面的研究工作。发表论文10余篇,包括RSC Adv.、New J. Chem.、Russ J. Electrochem.、《材料导报》《分子催化》等。lianghongyu163@163.com   
引用本文:    
梁红玉, 王斌, 陆光. 新型氮空位g-C3N4/Cu2(OH)2CO3异质结的构建及广谱光催化降解有机染料的性能[J]. 材料导报, 2024, 38(19): 23070195-6.
LIANG Hongyu, WANG Bin, LU Guang. Construction of Nitrogen Vacancies-doped g-C3N4/Cu2(OH)2CO3 Heterojunction with Outstanding Wide-spectrum-driven Photocatalytic Organic Dyestuff Degradation Ability. Materials Reports, 2024, 38(19): 23070195-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23070195  或          http://www.mater-rep.com/CN/Y2024/V38/I19/23070195
1 Lin H. Chinese Journal of Catalysis, 1991, 144(1), 189.
2 Guo C, Yin S, Dong Q, et al. Nanoscale, 2012, 4(11), 3394.
3 Fujishima A, Honda K. Nature, 1972, 238(1), 238.
4 Chang X, Sun S, Dong L, et al. Materials Letters, 2012, 83(12), 133.
5 Singh J A, Overbury S H, Dudney N J, et al.ACS Catalysis, 2012, 2(6), 138.
6 Xy A, Wza B, Jha B, et al. Applied Catalysis A, General, 2020, 601(7), 601.
7 Liang H Y, Zou H, Hu S. New Journal of Chemistry, 2017, 41(17), 8920.
8 Nguyen H T T, Tran H T V, Nguyen P M, et al. Journal of Water and Environment Technology, 2023, 21(1), 1.
9 Cazelles R, Liu J, Antonietti M. Chemelectrochem, 2015, 2(3), 333.
10 Naqvi K R, Marsh J M, Godfrey S, et al. International Journal of Cosmetic Science, 2013, 35(1), 41.
11 Mao Y, Wu M, Li G, et al. Reaction Kinetics, Mechanisms and Catalysis, 2018, 125(2), 1179.
12 Dong G H, Ho W K, Wang C. Journal of Materials Chemistry A, 2015, 3(2), 23435.
13 Wang X, Maeda K, Thomas A, et al. Nature Materials, 2009, 8(1), 76.
14 Prabhakar V S V, Kumar R P A, Jaesool S, et al. ACS Omega, 2018, 3(7), 7587.
15 He Z K, Fu J W, Cheng B, et al. Applied. Catalysis B Environmental, 2017, 205(5), 104.
16 Chen C, Zhou Y, Wang N, et al. RSC Advances, 2015, 5(116), 95523
17 Chen D, Wang X N, Zhang X Q, et al. International Journal of Hydrogen Energy, 2020, 45(46), 24697.
18 Li S J, Chen X, Hu S Z, et al. RSC Advances, 2016, 6(2), 45931.
19 Zheng Y, Jiao Y, Chen J, et al. Journal of the American Chemical Society, 2011, 133(50), 20116.
20 Hao X, Dai D S, Li S S, Dalton transactions, 2018, 47(2), 348.
21 Zhu J, Ling M, Ma R D, et al. Materials Reports, 2024, 38(11), 23010115(in Chinese)
朱杰, 凌敏, 马润东, 等. 材料导报, 2024, 38(11), 23010115.
22 Hao X, Dai D S, Li S S. Dalton Transactions, 2018, 47(2), 348.
23 Zhang Y, Liu J, Wu G, et al. Nanoscale, 2012, 4(17), 5300.
24 Wang X C, Maeda K A, Thomas K, et al. Nature Materials, 2009, 8(1), 76.
25 Ge L, Han C. Applied Catalysis B:Environmental, 2012, 117(1), 268.
26 Zhang S Q, Yang Y X, Guo Y N, et al. Journal of Hazardous Materials, 2013, 261(10), 235.
27 Liu G, Niu P, Yin L C, et al. Journal of the American Chemical Society, 2012, 134(22), 9070.
28 Guo Q, Xie Y, Wang X, et al. Chemical Physics Letters, 2003, 380(1), 84.
29 Kondo K, Murakami N, Ye C, et al. Applied Catalysis B: Environmental, 2013, 142(10), 362.
30 Xu L, Gu D, Chang X, et al. The Institution of Engineering and Technology, 2018, 13(4), 541.
[1] 刘守一, 望宇皓, 刘莉莉, 欧阳云祥, 李娜, 胡朝霞, 陈守文. 石墨相氮化碳在聚合物电解质膜中的研究进展[J]. 材料导报, 2024, 38(6): 23030250-7.
[2] 王海涛, 施宝旭, 赵晓旭, 常娜. 高效降解盐酸四环素的CdS/BiOCl复合光催化剂的制备及性能[J]. 材料导报, 2024, 38(6): 22060180-8.
[3] 刘月琴, 王海涛, 郭建峰, 赵晓旭, 常娜. 不同形貌g-C3N4光催化剂的制备及性能[J]. 材料导报, 2024, 38(4): 22080014-7.
[4] 李冠琼, 梁海欧, 李春萍, 白杰. ZnIn2S4基光催化剂的制备及改性研究进展[J]. 材料导报, 2024, 38(3): 22040272-6.
[5] 林青, 黎水平, 缪志鹏, 丁忆, 梁栋, 王昭, 张小娟. Au@α-Fe2O3纳米棒的制备及光催化性能[J]. 材料导报, 2024, 38(3): 22050040-6.
[6] 朱艳, 刘海龙, 贾仕奎, 李云峰, 首浩. Fe3O4/g-C3N4复合异质结的构建及紫外光降解罗丹明B[J]. 材料导报, 2024, 38(23): 23080020-7.
[7] 徐杨, 刘成宝, 郑磊之, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. 高结晶度g-C3N4在光催化领域的研究进展[J]. 材料导报, 2024, 38(21): 23060180-13.
[8] 刘京津, 赵华, 李会鹏, 蔡天凤. 氧磷共掺杂二维石墨相氮化碳的制备及光催化性能[J]. 材料导报, 2024, 38(21): 23070238-7.
[9] 莫日格吉乐, 包莫日根, 白璐, 谢兵, 于晓丽, 曹鸿璋, 赵丹蕾, 赵斯琴. CeO2光催化原理及改性研究进展[J]. 材料导报, 2024, 38(21): 23080150-6.
[10] 陈俊林, 常春. 具有三维花球状结构的钼酸铋在模拟太阳光照射下降解双氯芬酸钠[J]. 材料导报, 2024, 38(20): 23050078-9.
[11] 刘睿琦, 孙善富, 程鹏飞, 王莹麟, 郝熙冬. 光/电催化废塑料升级再造高附加值化学品研究进展[J]. 材料导报, 2024, 38(20): 23060226-7.
[12] 王雪怡, 王智远, 余伟, 周冰鑫, 徐榕, 杨兴东, 何辉超, 贾碧. 高压辅助溶胶-凝胶法制备La掺杂TiO2光催化剂及其可见光降解甲基橙研究[J]. 材料导报, 2024, 38(2): 22080236-5.
[13] 涂盛辉, 钟荣福, 张超, 刘桉如, 吴文彬, 杜军. ZIF-8@TiO2复合材料的制备及光催化性能[J]. 材料导报, 2024, 38(16): 23030150-6.
[14] 梁红玉, 王斌, 陆光, 商丽艳. 自牺牲法合成氮空位g-C3N4/Cu2(OH)2CO3异质结及其广谱光固氮性能[J]. 材料导报, 2024, 38(16): 22050055-6.
[15] 蔡心杰, 徐亦冬, 王玉全, 武金婷. 采用持久发光材料为内部光源的光催化复合材料研究进展[J]. 材料导报, 2024, 38(15): 23030157-10.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed