Construction of Nitrogen Vacancies-doped g-C3N4/Cu2(OH)2CO3 Heterojunction with Outstanding Wide-spectrum-driven Photocatalytic Organic Dyestuff Degradation Ability
LIANG Hongyu1,*, WANG Bin2, LU Guang3
1 School of Environmental and Safety Engineering, Liaoning Petrochemical University, Fushun 113001, Liaoning, China 2 Lanpec Technologies Limited, Shanghai 201518, China 3 School of Civil Engineering, Liaoning Petrochemical University, Fushun 113001, Liaoning, China
Abstract: In this study, a wide-spectrum-driven g-C3N4/Cu2(OH)2CO3(VCN/Cu) heterojunction catalyst with nitrogen vacancies was synthesized and the photocatalytic organic dyestuff degradation ability was investigated. The morphologies, crystal phases, element energy states and other properties of as-prepared catalysts were characterized by TEM/SEM, XRD, UV-Vis, XPS, PL, et al. The results indicate that the VCN/Cu heterojunction catalyst shows strong light absorption in the region of 250—1 800 nm, the reaction rate constant of photocatalytic RhB degradation for VCN/Cu heterojunction arrives 0.052 min-1, which is 12.7 times and 5.8 times higher than that of neat Cu2(OH)2CO3 and g-C3N4, as well as perfect photocatalytic stability. Nitrogen vacancies might not only promote interfacial charge transfer but also act as active sites to trap and reduce O2 molecules. Moreover, the mechanism of photocatalytic RhB degradation by VCN/Cu catalyst was studied.
通讯作者: *梁红玉,通信作者,辽宁石油化工大学环境与安全工程学院副教授、硕士研究生导师。1991年深圳大学应用化学专业毕业后到辽宁石油化工大学工作至今。2005年辽宁石油化工大学环境工程专业硕士毕业,2018年东北大学冶金物理化学专业博士毕业。目前主要从事纳米复合材料、环境污染控制等方面的研究工作。发表论文10余篇,包括RSC Adv.、New J. Chem.、Russ J. Electrochem.、《材料导报》《分子催化》等。lianghongyu163@163.com
引用本文:
梁红玉, 王斌, 陆光. 新型氮空位g-C3N4/Cu2(OH)2CO3异质结的构建及广谱光催化降解有机染料的性能[J]. 材料导报, 2024, 38(19): 23070195-6.
LIANG Hongyu, WANG Bin, LU Guang. Construction of Nitrogen Vacancies-doped g-C3N4/Cu2(OH)2CO3 Heterojunction with Outstanding Wide-spectrum-driven Photocatalytic Organic Dyestuff Degradation Ability. Materials Reports, 2024, 38(19): 23070195-6.
1 Lin H. Chinese Journal of Catalysis, 1991, 144(1), 189. 2 Guo C, Yin S, Dong Q, et al. Nanoscale, 2012, 4(11), 3394. 3 Fujishima A, Honda K. Nature, 1972, 238(1), 238. 4 Chang X, Sun S, Dong L, et al. Materials Letters, 2012, 83(12), 133. 5 Singh J A, Overbury S H, Dudney N J, et al.ACS Catalysis, 2012, 2(6), 138. 6 Xy A, Wza B, Jha B, et al. Applied Catalysis A, General, 2020, 601(7), 601. 7 Liang H Y, Zou H, Hu S. New Journal of Chemistry, 2017, 41(17), 8920. 8 Nguyen H T T, Tran H T V, Nguyen P M, et al. Journal of Water and Environment Technology, 2023, 21(1), 1. 9 Cazelles R, Liu J, Antonietti M. Chemelectrochem, 2015, 2(3), 333. 10 Naqvi K R, Marsh J M, Godfrey S, et al. International Journal of Cosmetic Science, 2013, 35(1), 41. 11 Mao Y, Wu M, Li G, et al. Reaction Kinetics, Mechanisms and Catalysis, 2018, 125(2), 1179. 12 Dong G H, Ho W K, Wang C. Journal of Materials Chemistry A, 2015, 3(2), 23435. 13 Wang X, Maeda K, Thomas A, et al. Nature Materials, 2009, 8(1), 76. 14 Prabhakar V S V, Kumar R P A, Jaesool S, et al. ACS Omega, 2018, 3(7), 7587. 15 He Z K, Fu J W, Cheng B, et al. Applied. Catalysis B Environmental, 2017, 205(5), 104. 16 Chen C, Zhou Y, Wang N, et al. RSC Advances, 2015, 5(116), 95523 17 Chen D, Wang X N, Zhang X Q, et al. International Journal of Hydrogen Energy, 2020, 45(46), 24697. 18 Li S J, Chen X, Hu S Z, et al. RSC Advances, 2016, 6(2), 45931. 19 Zheng Y, Jiao Y, Chen J, et al. Journal of the American Chemical Society, 2011, 133(50), 20116. 20 Hao X, Dai D S, Li S S, Dalton transactions, 2018, 47(2), 348. 21 Zhu J, Ling M, Ma R D, et al. Materials Reports, 2024, 38(11), 23010115(in Chinese) 朱杰, 凌敏, 马润东, 等. 材料导报, 2024, 38(11), 23010115. 22 Hao X, Dai D S, Li S S. Dalton Transactions, 2018, 47(2), 348. 23 Zhang Y, Liu J, Wu G, et al. Nanoscale, 2012, 4(17), 5300. 24 Wang X C, Maeda K A, Thomas K, et al. Nature Materials, 2009, 8(1), 76. 25 Ge L, Han C. Applied Catalysis B:Environmental, 2012, 117(1), 268. 26 Zhang S Q, Yang Y X, Guo Y N, et al. Journal of Hazardous Materials, 2013, 261(10), 235. 27 Liu G, Niu P, Yin L C, et al. Journal of the American Chemical Society, 2012, 134(22), 9070. 28 Guo Q, Xie Y, Wang X, et al. Chemical Physics Letters, 2003, 380(1), 84. 29 Kondo K, Murakami N, Ye C, et al. Applied Catalysis B: Environmental, 2013, 142(10), 362. 30 Xu L, Gu D, Chang X, et al. The Institution of Engineering and Technology, 2018, 13(4), 541.