Please wait a minute...
材料导报  2024, Vol. 38 Issue (19): 23070195-6    https://doi.org/10.11896/cldb.23070195
  无机非金属及其复合材料 |
新型氮空位g-C3N4/Cu2(OH)2CO3异质结的构建及广谱光催化降解有机染料的性能
梁红玉1,*, 王斌2, 陆光3
1 辽宁石油化工大学环境与安全工程学院,辽宁 抚顺 113001
2 上海蓝滨石化设备有限责任公司,上海 201518
3 辽宁石油化工大学土木工程学院,辽宁 抚顺 113001
Construction of Nitrogen Vacancies-doped g-C3N4/Cu2(OH)2CO3 Heterojunction with Outstanding Wide-spectrum-driven Photocatalytic Organic Dyestuff Degradation Ability
LIANG Hongyu1,*, WANG Bin2, LU Guang3
1 School of Environmental and Safety Engineering, Liaoning Petrochemical University, Fushun 113001, Liaoning, China
2 Lanpec Technologies Limited, Shanghai 201518, China
3 School of Civil Engineering, Liaoning Petrochemical University, Fushun 113001, Liaoning, China
下载:  全 文 ( PDF ) ( 11213KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 本研究设计了一款不含贵金属、宽光谱响应的氮空位异质结催化剂g-C3N4/Cu2(OH)2CO3(VCN/Cu),并考察了其对罗丹明B(RhB)的光催化降解性能。采用扫描电镜/透镜(SEM/TEM)、X射线衍射光谱(XRD)、X光电子能谱(XPS)、荧光光谱(PL)等分析手段对产物形貌、结构、元素能态等性质进行了表征。结果表明,VCN/Cu异质结催化剂对250~1 800 nm的光均有较强吸收。VCN/Cu光催化降解RhB最大反应速率常数达到0.052 min-1,分别是Cu2(OH)2CO3和g-C3N4的12.7倍和5.8倍,且具有优异的光催化稳定性。Cu2(OH)2CO3一方面作为红外光吸收材料,提高了对太阳光全光谱的利用率;另一方面与VCN构成异质结,提高了光生电子-空穴的分离效率,同时VCN上的氮空位强化了对光生电子的捕获、对氧的吸附及还原作用。此外,本研究还考察了VCN/Cu异质结催化剂光催化降解RhB的机理。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁红玉
王斌
陆光
关键词:  石墨相氮化碳  碱式碳酸铜  有机染料  氮空位  光催化    
Abstract: In this study, a wide-spectrum-driven g-C3N4/Cu2(OH)2CO3(VCN/Cu) heterojunction catalyst with nitrogen vacancies was synthesized and the photocatalytic organic dyestuff degradation ability was investigated. The morphologies, crystal phases, element energy states and other properties of as-prepared catalysts were characterized by TEM/SEM, XRD, UV-Vis, XPS, PL, et al. The results indicate that the VCN/Cu heterojunction catalyst shows strong light absorption in the region of 250—1 800 nm, the reaction rate constant of photocatalytic RhB degradation for VCN/Cu heterojunction arrives 0.052 min-1, which is 12.7 times and 5.8 times higher than that of neat Cu2(OH)2CO3 and g-C3N4, as well as perfect photocatalytic stability. Nitrogen vacancies might not only promote interfacial charge transfer but also act as active sites to trap and reduce O2 molecules. Moreover, the mechanism of photocatalytic RhB degradation by VCN/Cu catalyst was studied.
Key words:  g-C3N4    Cu2(OH)2CO3    organic dyestuff    nitrogen vacancies    photocatalysis
出版日期:  2024-10-10      发布日期:  2024-10-23
ZTFLH:  O641  
  O649  
基金资助: 辽宁省科技厅自然科学基金(2019-ZD-0063)
通讯作者:  *梁红玉,通信作者,辽宁石油化工大学环境与安全工程学院副教授、硕士研究生导师。1991年深圳大学应用化学专业毕业后到辽宁石油化工大学工作至今。2005年辽宁石油化工大学环境工程专业硕士毕业,2018年东北大学冶金物理化学专业博士毕业。目前主要从事纳米复合材料、环境污染控制等方面的研究工作。发表论文10余篇,包括RSC Adv.、New J. Chem.、Russ J. Electrochem.、《材料导报》《分子催化》等。lianghongyu163@163.com   
引用本文:    
梁红玉, 王斌, 陆光. 新型氮空位g-C3N4/Cu2(OH)2CO3异质结的构建及广谱光催化降解有机染料的性能[J]. 材料导报, 2024, 38(19): 23070195-6.
LIANG Hongyu, WANG Bin, LU Guang. Construction of Nitrogen Vacancies-doped g-C3N4/Cu2(OH)2CO3 Heterojunction with Outstanding Wide-spectrum-driven Photocatalytic Organic Dyestuff Degradation Ability. Materials Reports, 2024, 38(19): 23070195-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23070195  或          https://www.mater-rep.com/CN/Y2024/V38/I19/23070195
1 Lin H. Chinese Journal of Catalysis, 1991, 144(1), 189.
2 Guo C, Yin S, Dong Q, et al. Nanoscale, 2012, 4(11), 3394.
3 Fujishima A, Honda K. Nature, 1972, 238(1), 238.
4 Chang X, Sun S, Dong L, et al. Materials Letters, 2012, 83(12), 133.
5 Singh J A, Overbury S H, Dudney N J, et al.ACS Catalysis, 2012, 2(6), 138.
6 Xy A, Wza B, Jha B, et al. Applied Catalysis A, General, 2020, 601(7), 601.
7 Liang H Y, Zou H, Hu S. New Journal of Chemistry, 2017, 41(17), 8920.
8 Nguyen H T T, Tran H T V, Nguyen P M, et al. Journal of Water and Environment Technology, 2023, 21(1), 1.
9 Cazelles R, Liu J, Antonietti M. Chemelectrochem, 2015, 2(3), 333.
10 Naqvi K R, Marsh J M, Godfrey S, et al. International Journal of Cosmetic Science, 2013, 35(1), 41.
11 Mao Y, Wu M, Li G, et al. Reaction Kinetics, Mechanisms and Catalysis, 2018, 125(2), 1179.
12 Dong G H, Ho W K, Wang C. Journal of Materials Chemistry A, 2015, 3(2), 23435.
13 Wang X, Maeda K, Thomas A, et al. Nature Materials, 2009, 8(1), 76.
14 Prabhakar V S V, Kumar R P A, Jaesool S, et al. ACS Omega, 2018, 3(7), 7587.
15 He Z K, Fu J W, Cheng B, et al. Applied. Catalysis B Environmental, 2017, 205(5), 104.
16 Chen C, Zhou Y, Wang N, et al. RSC Advances, 2015, 5(116), 95523
17 Chen D, Wang X N, Zhang X Q, et al. International Journal of Hydrogen Energy, 2020, 45(46), 24697.
18 Li S J, Chen X, Hu S Z, et al. RSC Advances, 2016, 6(2), 45931.
19 Zheng Y, Jiao Y, Chen J, et al. Journal of the American Chemical Society, 2011, 133(50), 20116.
20 Hao X, Dai D S, Li S S, Dalton transactions, 2018, 47(2), 348.
21 Zhu J, Ling M, Ma R D, et al. Materials Reports, 2024, 38(11), 23010115(in Chinese)
朱杰, 凌敏, 马润东, 等. 材料导报, 2024, 38(11), 23010115.
22 Hao X, Dai D S, Li S S. Dalton Transactions, 2018, 47(2), 348.
23 Zhang Y, Liu J, Wu G, et al. Nanoscale, 2012, 4(17), 5300.
24 Wang X C, Maeda K A, Thomas K, et al. Nature Materials, 2009, 8(1), 76.
25 Ge L, Han C. Applied Catalysis B:Environmental, 2012, 117(1), 268.
26 Zhang S Q, Yang Y X, Guo Y N, et al. Journal of Hazardous Materials, 2013, 261(10), 235.
27 Liu G, Niu P, Yin L C, et al. Journal of the American Chemical Society, 2012, 134(22), 9070.
28 Guo Q, Xie Y, Wang X, et al. Chemical Physics Letters, 2003, 380(1), 84.
29 Kondo K, Murakami N, Ye C, et al. Applied Catalysis B: Environmental, 2013, 142(10), 362.
30 Xu L, Gu D, Chang X, et al. The Institution of Engineering and Technology, 2018, 13(4), 541.
[1] 阳东胤, 赵媛, 燕红. 碳量子点的制备、性质及在光催化领域中的应用研究进展[J]. 材料导报, 2025, 39(8): 24060102-13.
[2] 赵娣, 刘洪燕, 王树军, 孙欣语, 张紫璇, 齐学宇, 刘子帆. Z型异质结复合薄膜UIO-66-NH2/Ag/Ag3PO4/Ni的可见光催化性能及机理[J]. 材料导报, 2025, 39(8): 24030178-6.
[3] 杨明, 孙杰, 王金泽, 崔占朋, 吴敏, 杜伟. 金属有机框架及碳基材料在室内有机污染物控制中的研究进展[J]. 材料导报, 2025, 39(4): 24010153-8.
[4] 何静娴, 刘建霞, 缑浩. 光热催化产氢技术的进展与讨论[J]. 材料导报, 2025, 39(11): 24010063-8.
[5] 于慧敏, 郭少红, 贾美林, 贾晶春, 常迎. 硫族半导体催化剂用于高效光催化CO2还原的研究进展[J]. 材料导报, 2025, 39(10): 24040169-9.
[6] 孔德茹, 刘靖, 杨晓林, 孙冬兰, 张进康. 溶胶-凝胶-燃烧法中双功能络合剂对掺铝氧化锌性能影响的研究[J]. 材料导报, 2025, 39(1): 23100131-7.
[7] 刘守一, 望宇皓, 刘莉莉, 欧阳云祥, 李娜, 胡朝霞, 陈守文. 石墨相氮化碳在聚合物电解质膜中的研究进展[J]. 材料导报, 2024, 38(6): 23030250-7.
[8] 王海涛, 施宝旭, 赵晓旭, 常娜. 高效降解盐酸四环素的CdS/BiOCl复合光催化剂的制备及性能[J]. 材料导报, 2024, 38(6): 22060180-8.
[9] 刘月琴, 王海涛, 郭建峰, 赵晓旭, 常娜. 不同形貌g-C3N4光催化剂的制备及性能[J]. 材料导报, 2024, 38(4): 22080014-7.
[10] 李冠琼, 梁海欧, 李春萍, 白杰. ZnIn2S4基光催化剂的制备及改性研究进展[J]. 材料导报, 2024, 38(3): 22040272-6.
[11] 林青, 黎水平, 缪志鹏, 丁忆, 梁栋, 王昭, 张小娟. Au@α-Fe2O3纳米棒的制备及光催化性能[J]. 材料导报, 2024, 38(3): 22050040-6.
[12] 朱艳, 刘海龙, 贾仕奎, 李云峰, 首浩. Fe3O4/g-C3N4复合异质结的构建及紫外光降解罗丹明B[J]. 材料导报, 2024, 38(23): 23080020-7.
[13] 徐杨, 刘成宝, 郑磊之, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. 高结晶度g-C3N4在光催化领域的研究进展[J]. 材料导报, 2024, 38(21): 23060180-13.
[14] 刘京津, 赵华, 李会鹏, 蔡天凤. 氧磷共掺杂二维石墨相氮化碳的制备及光催化性能[J]. 材料导报, 2024, 38(21): 23070238-7.
[15] 莫日格吉乐, 包莫日根, 白璐, 谢兵, 于晓丽, 曹鸿璋, 赵丹蕾, 赵斯琴. CeO2光催化原理及改性研究进展[J]. 材料导报, 2024, 38(21): 23080150-6.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed