Please wait a minute...
材料导报  2025, Vol. 39 Issue (11): 24010063-8    https://doi.org/10.11896/cldb.24010063
  无机非金属及其复合材料 |
光热催化产氢技术的进展与讨论
何静娴1,*, 刘建霞1, 缑浩2
1 兰州交通大学新能源与动力工程学院,兰州 730070
2 兰州城市学院化学化工学院,兰州 730070
Advancements and Discussions in Photo-Thermal Catalytic Hydrogen Production Technology
HE Jingxian1,*, LIU Jianxia1, GOU Hao2
1 School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
2 College of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou 730070, China
下载:  全 文 ( PDF ) ( 10499KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为贯彻落实“碳达峰”和“碳中和”的目标,减少煤、石油、天然气燃烧过程中CO2的排放,缓解能源危机,提升资源优化配置能力,清洁能源是未来发展的长久趋势。氢能因清洁无污染、高燃烧值等优点而广受青睐。本文对比光催化和光热催化产氢技术的差异,对当前新型发展技术研究现状做了总结,并对光热催化产氢的潜力和挑战进行了展望。研究发现,利用太阳能光热催化技术产氢,一定程度上能促进载流子的运动,加快产氢速率,增强太阳能全光谱吸收能力,弥补光催化技术的不足。技术限制、反应条件苛刻、产物不稳定等因素限制了光热催化产氢技术的进一步发展,目前的产氢效率仍未能突破5%~10%的技术瓶颈,因此,太阳能光热催化产氢技术仍具有很大发展空间。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何静娴
刘建霞
缑浩
关键词:  清洁能源  光热催化  光催化  产氢    
Abstract: To achieve the goals of ‘carbon peak’ and ‘carbon neutrality’, mitigate CO2 emissions from coal, oil, and natural gas, address the energy crisis, and strengthen the capacity for resource allocation optimization, the transition to clean energy represents a long-term trend in future development. Hydrogen energy is widely favored for its advantages, including being clean, pollution-free, and having a high combustion value. In this paper, we compare the differences between photocatalytic and photothermal hydrogen production technologies, summarize the current research status of emerging development technologies, and prospectively analyze the potential and challenges of photothermal hydrogen production. It has been demonstrated that the utilization of solar photothermal catalytic technology for hydrogen production can enhance carrier mobility, accelerate the hydrogen generation rate, and improve the full-spectrum absorption capacity of solar energy to a certain extent. This approach also compensates for some of the limitations of traditional photocatalytic technology. However, technical constraints, stringent reaction conditions, and product instability remain significant challenges that hinder the further advancement of photothermal catalytic hydrogen production technology. As a result,the current hydrogen production efficiency remains below the 5%—10% technical threshold, failing to overcome this persistent technological bottleneck. Therefore, solar photothermal catalytic hydrogen production technology still holds substantial potential for future development.
Key words:  clean energy    photo-thermal catalysis    photocatalysis    hydrogen production
发布日期:  2025-05-29
ZTFLH:  TK91  
基金资助: 甘肃省科技计划资助项目,省青年科技基金计划(22JR5RA377);生态功能高分子材料教育部重点实验室开放基金(KF-22-05);城市废水中手性污染物电化学识别研究与应用(LZCU-KJ/2022-015);兰州市人才创新创业项目(2022-RC-71)
通讯作者:  *何静娴,博士,兰州交通大学新能源科学与工程学院讲师、硕士研究生导师。主要从事以太阳能光热材料开发与应用为主的新能源材料和器件的研究。Hejx@lzjtu.edu.cn   
引用本文:    
何静娴, 刘建霞, 缑浩. 光热催化产氢技术的进展与讨论[J]. 材料导报, 2025, 39(11): 24010063-8.
HE Jingxian, LIU Jianxia, GOU Hao. Advancements and Discussions in Photo-Thermal Catalytic Hydrogen Production Technology. Materials Reports, 2025, 39(11): 24010063-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010063  或          https://www.mater-rep.com/CN/Y2025/V39/I11/24010063
1 Li Z Y, Huang G S. Chemical Industry and Engineering Progress, 2015, 34(10), 3521 (in Chinese).
李振宇, 黄格省. 化工进展, 2015, 34(10), 3521.
2 Xie F. Research on ammonia decomposition for hydrogen production and optimization of photothermal conversion device. Master’s Thesis, Hebei Agricultural University, China, 2022 (in Chinese).
谢飞. 氨气分解制氢研究与光热转换装置优化. 硕士学位论文, 河北农业大学, 2022.
3 Huang Q F. People’s Forum, 2021(15), 6 (in Chinese).
黄奇帆. 人民论坛, 2021(15), 6.
4 Liu Y. Experimental study on photoelectric-thermal coupling PEM hydrogen production. Master’s Thesis, Beijing University of Civil Engineering and Architecture, China, 2023 (in Chinese).
刘阳. 光伏光热耦合PEM制氢实验研究. 硕士学位论文, 北京建筑大学, 2023.
5 Zhang C, Li Y, Shuai D M, et al. Chemosphere, 2019, 214, 462.
6 Linsebigler A L, Lu G Q, Yates J T. Chemical Reviews, 2002, 95(3), 735.
7 Xiao N, Li S, Li X, et al. Chinese Journal of Catalysis, 2020, 41(4), 642.
8 Ismail A A, Bahnemann D W. Solar Energy Materials and Solar Cells, 2014, 128, 85.
9 Fang J. Mechanism and method of solar full spectrum photothermal/chemical energy conversion for fuel production. Ph. D. Thesis, University of Chinese Academy of Sciences (Institute of Engineering Thermophy-sics, Chinese Academy of Sciences), China, 2022 (in Chinese).
方娟. 太阳能全光谱光/热化学制燃料能量转化机理与方法. 博士学位论文, 中国科学院大学(中国科学院工程热物理研究所), 2022.
10 Takanabe K. ACS Catalysis, 2017, 7(11), 8006.
11 Baur E, Perret A. Helvetica Chimica Acta, 1924, 7(1), 910.
12 Fujishima A, Honda K. Nature, 1972, 238(5358), 37.
13 Wang X, Maeda K, Thomas A, et al. Nature Materials, 2009, 8(1), 76.
14 Ran J, Ma T Y, Gao G, et al. Energy & Environmental Science, 2015, 8(12), 3708.
15 Qiu B, Zhu Q, Du M, et al. Angewandte Chemie International Edition, 2017, 56(10), 2684.
16 Zhao S, Xu J, Liu Z, et al. New Journal of Chemistry, 2019, 43(47), 18876.
17 Zhao W, Liu J, Ding Z, et al. Journal of Alloys and Compounds, 2020, 813, 152234.
18 Tasleem S, Tahir M, Zakaria Z Y. Journal of Alloys and Compounds, 2020, 842, 155752.
19 Sun X H, Shi Y X, Lu J L, et al. Applied Surface Science, 2022, 606, 154841.
20 Pinaud B A, Benck J D, Seitz L C, et al. Energy & Environmental Science, 2013, 6, 1983.
21 Liao L, Zhang Q, Su Z, et al. Nature Nanotechnology, 2014, 9, 69.
22 Zhao D, Wang Y, Dong C L, et al. Nature Energy, 2021, 6, 388.
23 Wang Z Q, Li L F, Liu M Z, et al. Journal of Energy Chemistry, 2020, 48, 241.
24 Chen Z, Chen X, Zheng X, et al. Environmental Science Research, 2002(3), 42 (in Chinese).
陈震, 陈晓, 郑曦, 等. 环境科学研究, 2002(3), 42.
25 Dong S, Zhao Y, Yang J, et al. Applied Catalysis B:Environmental, 2021, 291, 120127.
26 Zhang J Q, Chen H J, Duan X G, et al. Materials Today, 2023, 68, 234.
27 Xu M, Hu X, Wang S, et al. Catalysis, 2019, 377, 652.
28 Hoch L B, Wood T E, O’brien P G, et al. Advanced Science, 2014, 1(1), 1400013.
29 Zhang H, Wang T, Wang J, et al. Advanced Materials, 2016, 28(19), 3703.
30 Feng X, Liu D, Yan B, et al. Angewandte Chemie International Edition in English, 2021, 60(34), 18552.
31 Fang J F, Zhang P C, Chang H M, et al. Solar Energy Materials and Solar Cells, 2018, 185, 456.
32 Li Z, Liu J, Zhao Y, Wen X D, et al. Advanced Materials, 2018, 30(31), 1800527.
33 Song C, Liu X, Xu M, et al. ACS Catalysis, 2020, 10, 18, 10364.
34 Song C, Wang Z, Yin Z, et al. Chem Catalysis, 2022, 2(1), 52.
35 Mateo D, Cerrillo J L, Durini S, et al. Chemical Society Reviews, 2021, 50, 2173.
36 Fang J F, Zhang P C, Chang H M, et al. Solar Energy Materials and Solar Cells, 2018, 185, 456.
37 Luo C, Fu Y, Yang J, et al. ChemCatChem, 2019, 11, 1643.
38 Zhang X, Sun W, Xu Y, et al. Applied Surface Science, 2019, 469, 764.
39 Zhang M. Sulfur-based photothermal materials and their applications in hydrogen production from water splitting and degradation of ciprofloxacin. Master’s Thesis, Nanjing University of Information Science and Techno-logy, China, 2023(in Chinese).
张谋. 硫基光热材料及其在分解水制氢和降解环丙沙星的应用. 硕士学位论文, 南京信息工程大学, 2023.
40 Ritterskamp P, Kuklya A, Kerpen K, et al. Angewandte Chemie International Edition, 2007, 46(41), 7715.
41 Li Q Y, Du Q C, Lyu G X. Molecular Catalysis, 2008, 22(2), 177 (in Chinese).
李秋叶, 杜全超, 吕功煊. 分子催化, 2008, 22(2), 177.
42 Song F, Zhu Q, Xu Q, et al. Advanced Energy Materials, 2018, 8(1), 1770139.
43 Song R, Luo B, Geng J F, et al. Industrial & Engineering Chemistry Research, 2018, 57(23), 7846.
44 Li X J, Zhao S Y, Duan X G, et al. Applied Catalysis B:Environmental, 2021, 283, 119660.
45 Du C, Yan B, Yang G W. Nano Energy, 2020, 76, 105031.
46 Wu D M. Design and synthesis of Pd-based photothermal catalytic materials and their application in formic acid hydrogen production. Master’s Thesis, Inner Mongolia University, China, 2021 (in Chinese).
武东敏. Pd基光热催化材料的设计合成及其在甲酸产氢中的应用. 硕士学位论文, 内蒙古大学, 2021.
47 Hu S, Geng J, Jing D. Topics in Catalysis, 2021, 67, 1411.
48 Guo Y, Zhou Q, Nan J, et al. Nature Communications, 2022, 13, 2067.
49 Zhang Y H. Design and synthesis of graphitic carbon nitride-based composite materials and their study on photocatalytic and photothermal catalytic hydrogen production performance. Master’s Thesis, Jiangsu University, China, 2023 (in Chinese).
张亚海. 石墨相氮化碳基复合材料的设计合成及其光催化和光热催化产氢性能的研究. 硕士学位论文, 江苏大学, 2023.
50 Korzhak A V, Ermokhina N I, Stroyuk A L, et al. Theoretical and Expe-rimental Chemistry, 2005, 41, 26.
51 Chen X P. Study on the effect of non-precious metal nickel modification on the photocatalytic hydrogen production performance of TiO2 and CdS. Ph. D. Thesis, Shanghai Jiao Tong University, China, 2020 (in Chinese).
陈小平. 非贵金属镍修饰对TiO2和CdS光催化产氢性能影响的研究. 博士学位论文, 上海交通大学, 2020.
52 Xu M Q. Study on the photocatalytic hydrogen production performance of antibiotic wastewater based on sulfide system supported MoS2 Co-catalyst. Master’s Thesis, Shanghai Jiao Tong University, China, 2020 (in Chinese).
徐美奇. 基于硫化物体系负载MoS2助催化剂的光催化转化抗生素废水产氢性能的研究. 硕士学位论文, 上海交通大学, 2020.
53 Zhang Z P. Study on hydrogen spillover enhanced EG-Ru/TiO2 photoca-talytic and photothermal catalytic hydrogen production performance. Master’s Thesis, Taiyuan University of Technology, China, 2023 (in Chinese).
张志鹏. 氢溢流促进EG-Ru/TiO2光/光热催化制氢性能研究. 硕士学位论文, 太原理工大学, 2023.
[1] 阳东胤, 赵媛, 燕红. 碳量子点的制备、性质及在光催化领域中的应用研究进展[J]. 材料导报, 2025, 39(8): 24060102-13.
[2] 武金帆, 徐芬, 孙立贤, 廖鹿敏, 管彦洵. 具有抗氧化性的Al-Bi(C2H5OH)3-C多孔块体制氢材料[J]. 材料导报, 2025, 39(8): 24030133-6.
[3] 赵娣, 刘洪燕, 王树军, 孙欣语, 张紫璇, 齐学宇, 刘子帆. Z型异质结复合薄膜UIO-66-NH2/Ag/Ag3PO4/Ni的可见光催化性能及机理[J]. 材料导报, 2025, 39(8): 24030178-6.
[4] 杨明, 孙杰, 王金泽, 崔占朋, 吴敏, 杜伟. 金属有机框架及碳基材料在室内有机污染物控制中的研究进展[J]. 材料导报, 2025, 39(4): 24010153-8.
[5] 张云松, 庞赟佶, 许嘉, 陈义胜, 王丽, 屈忠义. 微波热解技术在制备生物炭中的应用及研究进展[J]. 材料导报, 2025, 39(11): 24040164-7.
[6] 于慧敏, 郭少红, 贾美林, 贾晶春, 常迎. 硫族半导体催化剂用于高效光催化CO2还原的研究进展[J]. 材料导报, 2025, 39(10): 24040169-9.
[7] 孔德茹, 刘靖, 杨晓林, 孙冬兰, 张进康. 溶胶-凝胶-燃烧法中双功能络合剂对掺铝氧化锌性能影响的研究[J]. 材料导报, 2025, 39(1): 23100131-7.
[8] 王海涛, 施宝旭, 赵晓旭, 常娜. 高效降解盐酸四环素的CdS/BiOCl复合光催化剂的制备及性能[J]. 材料导报, 2024, 38(6): 22060180-8.
[9] 刘月琴, 王海涛, 郭建峰, 赵晓旭, 常娜. 不同形貌g-C3N4光催化剂的制备及性能[J]. 材料导报, 2024, 38(4): 22080014-7.
[10] 李冠琼, 梁海欧, 李春萍, 白杰. ZnIn2S4基光催化剂的制备及改性研究进展[J]. 材料导报, 2024, 38(3): 22040272-6.
[11] 林青, 黎水平, 缪志鹏, 丁忆, 梁栋, 王昭, 张小娟. Au@α-Fe2O3纳米棒的制备及光催化性能[J]. 材料导报, 2024, 38(3): 22050040-6.
[12] 朱艳, 刘海龙, 贾仕奎, 李云峰, 首浩. Fe3O4/g-C3N4复合异质结的构建及紫外光降解罗丹明B[J]. 材料导报, 2024, 38(23): 23080020-7.
[13] 徐杨, 刘成宝, 郑磊之, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. 高结晶度g-C3N4在光催化领域的研究进展[J]. 材料导报, 2024, 38(21): 23060180-13.
[14] 刘京津, 赵华, 李会鹏, 蔡天凤. 氧磷共掺杂二维石墨相氮化碳的制备及光催化性能[J]. 材料导报, 2024, 38(21): 23070238-7.
[15] 莫日格吉乐, 包莫日根, 白璐, 谢兵, 于晓丽, 曹鸿璋, 赵丹蕾, 赵斯琴. CeO2光催化原理及改性研究进展[J]. 材料导报, 2024, 38(21): 23080150-6.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed