Advancements and Discussions in Photo-Thermal Catalytic Hydrogen Production Technology
HE Jingxian1,*, LIU Jianxia1, GOU Hao2
1 School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China 2 College of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou 730070, China
Abstract: To achieve the goals of ‘carbon peak’ and ‘carbon neutrality’, mitigate CO2 emissions from coal, oil, and natural gas, address the energy crisis, and strengthen the capacity for resource allocation optimization, the transition to clean energy represents a long-term trend in future development. Hydrogen energy is widely favored for its advantages, including being clean, pollution-free, and having a high combustion value. In this paper, we compare the differences between photocatalytic and photothermal hydrogen production technologies, summarize the current research status of emerging development technologies, and prospectively analyze the potential and challenges of photothermal hydrogen production. It has been demonstrated that the utilization of solar photothermal catalytic technology for hydrogen production can enhance carrier mobility, accelerate the hydrogen generation rate, and improve the full-spectrum absorption capacity of solar energy to a certain extent. This approach also compensates for some of the limitations of traditional photocatalytic technology. However, technical constraints, stringent reaction conditions, and product instability remain significant challenges that hinder the further advancement of photothermal catalytic hydrogen production technology. As a result,the current hydrogen production efficiency remains below the 5%—10% technical threshold, failing to overcome this persistent technological bottleneck. Therefore, solar photothermal catalytic hydrogen production technology still holds substantial potential for future development.
1 Li Z Y, Huang G S. Chemical Industry and Engineering Progress, 2015, 34(10), 3521 (in Chinese). 李振宇, 黄格省. 化工进展, 2015, 34(10), 3521. 2 Xie F. Research on ammonia decomposition for hydrogen production and optimization of photothermal conversion device. Master’s Thesis, Hebei Agricultural University, China, 2022 (in Chinese). 谢飞. 氨气分解制氢研究与光热转换装置优化. 硕士学位论文, 河北农业大学, 2022. 3 Huang Q F. People’s Forum, 2021(15), 6 (in Chinese). 黄奇帆. 人民论坛, 2021(15), 6. 4 Liu Y. Experimental study on photoelectric-thermal coupling PEM hydrogen production. Master’s Thesis, Beijing University of Civil Engineering and Architecture, China, 2023 (in Chinese). 刘阳. 光伏光热耦合PEM制氢实验研究. 硕士学位论文, 北京建筑大学, 2023. 5 Zhang C, Li Y, Shuai D M, et al. Chemosphere, 2019, 214, 462. 6 Linsebigler A L, Lu G Q, Yates J T. Chemical Reviews, 2002, 95(3), 735. 7 Xiao N, Li S, Li X, et al. Chinese Journal of Catalysis, 2020, 41(4), 642. 8 Ismail A A, Bahnemann D W. Solar Energy Materials and Solar Cells, 2014, 128, 85. 9 Fang J. Mechanism and method of solar full spectrum photothermal/chemical energy conversion for fuel production. Ph. D. Thesis, University of Chinese Academy of Sciences (Institute of Engineering Thermophy-sics, Chinese Academy of Sciences), China, 2022 (in Chinese). 方娟. 太阳能全光谱光/热化学制燃料能量转化机理与方法. 博士学位论文, 中国科学院大学(中国科学院工程热物理研究所), 2022. 10 Takanabe K. ACS Catalysis, 2017, 7(11), 8006. 11 Baur E, Perret A. Helvetica Chimica Acta, 1924, 7(1), 910. 12 Fujishima A, Honda K. Nature, 1972, 238(5358), 37. 13 Wang X, Maeda K, Thomas A, et al. Nature Materials, 2009, 8(1), 76. 14 Ran J, Ma T Y, Gao G, et al. Energy & Environmental Science, 2015, 8(12), 3708. 15 Qiu B, Zhu Q, Du M, et al. Angewandte Chemie International Edition, 2017, 56(10), 2684. 16 Zhao S, Xu J, Liu Z, et al. New Journal of Chemistry, 2019, 43(47), 18876. 17 Zhao W, Liu J, Ding Z, et al. Journal of Alloys and Compounds, 2020, 813, 152234. 18 Tasleem S, Tahir M, Zakaria Z Y. Journal of Alloys and Compounds, 2020, 842, 155752. 19 Sun X H, Shi Y X, Lu J L, et al. Applied Surface Science, 2022, 606, 154841. 20 Pinaud B A, Benck J D, Seitz L C, et al. Energy & Environmental Science, 2013, 6, 1983. 21 Liao L, Zhang Q, Su Z, et al. Nature Nanotechnology, 2014, 9, 69. 22 Zhao D, Wang Y, Dong C L, et al. Nature Energy, 2021, 6, 388. 23 Wang Z Q, Li L F, Liu M Z, et al. Journal of Energy Chemistry, 2020, 48, 241. 24 Chen Z, Chen X, Zheng X, et al. Environmental Science Research, 2002(3), 42 (in Chinese). 陈震, 陈晓, 郑曦, 等. 环境科学研究, 2002(3), 42. 25 Dong S, Zhao Y, Yang J, et al. Applied Catalysis B:Environmental, 2021, 291, 120127. 26 Zhang J Q, Chen H J, Duan X G, et al. Materials Today, 2023, 68, 234. 27 Xu M, Hu X, Wang S, et al. Catalysis, 2019, 377, 652. 28 Hoch L B, Wood T E, O’brien P G, et al. Advanced Science, 2014, 1(1), 1400013. 29 Zhang H, Wang T, Wang J, et al. Advanced Materials, 2016, 28(19), 3703. 30 Feng X, Liu D, Yan B, et al. Angewandte Chemie International Edition in English, 2021, 60(34), 18552. 31 Fang J F, Zhang P C, Chang H M, et al. Solar Energy Materials and Solar Cells, 2018, 185, 456. 32 Li Z, Liu J, Zhao Y, Wen X D, et al. Advanced Materials, 2018, 30(31), 1800527. 33 Song C, Liu X, Xu M, et al. ACS Catalysis, 2020, 10, 18, 10364. 34 Song C, Wang Z, Yin Z, et al. Chem Catalysis, 2022, 2(1), 52. 35 Mateo D, Cerrillo J L, Durini S, et al. Chemical Society Reviews, 2021, 50, 2173. 36 Fang J F, Zhang P C, Chang H M, et al. Solar Energy Materials and Solar Cells, 2018, 185, 456. 37 Luo C, Fu Y, Yang J, et al. ChemCatChem, 2019, 11, 1643. 38 Zhang X, Sun W, Xu Y, et al. Applied Surface Science, 2019, 469, 764. 39 Zhang M. Sulfur-based photothermal materials and their applications in hydrogen production from water splitting and degradation of ciprofloxacin. Master’s Thesis, Nanjing University of Information Science and Techno-logy, China, 2023(in Chinese). 张谋. 硫基光热材料及其在分解水制氢和降解环丙沙星的应用. 硕士学位论文, 南京信息工程大学, 2023. 40 Ritterskamp P, Kuklya A, Kerpen K, et al. Angewandte Chemie International Edition, 2007, 46(41), 7715. 41 Li Q Y, Du Q C, Lyu G X. Molecular Catalysis, 2008, 22(2), 177 (in Chinese). 李秋叶, 杜全超, 吕功煊. 分子催化, 2008, 22(2), 177. 42 Song F, Zhu Q, Xu Q, et al. Advanced Energy Materials, 2018, 8(1), 1770139. 43 Song R, Luo B, Geng J F, et al. Industrial & Engineering Chemistry Research, 2018, 57(23), 7846. 44 Li X J, Zhao S Y, Duan X G, et al. Applied Catalysis B:Environmental, 2021, 283, 119660. 45 Du C, Yan B, Yang G W. Nano Energy, 2020, 76, 105031. 46 Wu D M. Design and synthesis of Pd-based photothermal catalytic materials and their application in formic acid hydrogen production. Master’s Thesis, Inner Mongolia University, China, 2021 (in Chinese). 武东敏. Pd基光热催化材料的设计合成及其在甲酸产氢中的应用. 硕士学位论文, 内蒙古大学, 2021. 47 Hu S, Geng J, Jing D. Topics in Catalysis, 2021, 67, 1411. 48 Guo Y, Zhou Q, Nan J, et al. Nature Communications, 2022, 13, 2067. 49 Zhang Y H. Design and synthesis of graphitic carbon nitride-based composite materials and their study on photocatalytic and photothermal catalytic hydrogen production performance. Master’s Thesis, Jiangsu University, China, 2023 (in Chinese). 张亚海. 石墨相氮化碳基复合材料的设计合成及其光催化和光热催化产氢性能的研究. 硕士学位论文, 江苏大学, 2023. 50 Korzhak A V, Ermokhina N I, Stroyuk A L, et al. Theoretical and Expe-rimental Chemistry, 2005, 41, 26. 51 Chen X P. Study on the effect of non-precious metal nickel modification on the photocatalytic hydrogen production performance of TiO2 and CdS. Ph. D. Thesis, Shanghai Jiao Tong University, China, 2020 (in Chinese). 陈小平. 非贵金属镍修饰对TiO2和CdS光催化产氢性能影响的研究. 博士学位论文, 上海交通大学, 2020. 52 Xu M Q. Study on the photocatalytic hydrogen production performance of antibiotic wastewater based on sulfide system supported MoS2 Co-catalyst. Master’s Thesis, Shanghai Jiao Tong University, China, 2020 (in Chinese). 徐美奇. 基于硫化物体系负载MoS2助催化剂的光催化转化抗生素废水产氢性能的研究. 硕士学位论文, 上海交通大学, 2020. 53 Zhang Z P. Study on hydrogen spillover enhanced EG-Ru/TiO2 photoca-talytic and photothermal catalytic hydrogen production performance. Master’s Thesis, Taiyuan University of Technology, China, 2023 (in Chinese). 张志鹏. 氢溢流促进EG-Ru/TiO2光/光热催化制氢性能研究. 硕士学位论文, 太原理工大学, 2023.