Please wait a minute...
材料导报  2025, Vol. 39 Issue (11): 24040164-7    https://doi.org/10.11896/cldb.24040164
  高分子与聚合物基复合材料 |
微波热解技术在制备生物炭中的应用及研究进展
张云松1, 庞赟佶2, 许嘉3, 陈义胜1, 王丽1,2,4,*, 屈忠义2,*
1 内蒙古科技大学材料科学与工程学院,内蒙古 包头 014010
2 内蒙古科技大学能源与环境学院,内蒙古 包头 014010
3 内蒙古科技大学分析测试中心,内蒙古 包头 014010
4 上海交通大学包头材料研究院,内蒙古 包头 014010
Application and Research Progress of Microwave Pyrolysis Technology in Preparing Biochar
ZHANG Yunsong1, PANG Yunji2, XU Jia3, CHEN Yisheng1, WANG Li1,2,4,*, QU Zhongyi2,*
1 School of Materials and Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, Inner Mongolia, China
2 School of Energy and Environment, Inner Mongolia University of Science & Technology, Baotou 014010, Inner Mongolia, China
3 Analysis and Testing Center, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Mongolia, China
4 Baotou Institute of Materials, Shanghai Jiao Tong University, Baotou 014010, Inner Mongolia, China
下载:  全 文 ( PDF ) ( 13148KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在将生物质转化为生物炭的过程中,与传统热解技术相比,微波热解技术显著提高了生物炭的转化效率,并改善了其品质。本文综述了微波热解技术对生物炭产量和质量的影响,并指出这些影响与原料种类、微波功率及热解条件等因素密切相关,表明优化这些因素对确保生物炭最佳产出至关重要。同时,生物炭作为微波热解的产物,在降解焦油方面表现出卓越性能,进一步展示了其在清洁能源应用领域的重要价值。本文意在阐述微波热解技术在提升生物炭转化效率与降解焦油方面的作用,重点总结了影响生物炭产量和质量的因素,展示了该技术在提高能源利用效率和环境友好性方面的显著优势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张云松
庞赟佶
许嘉
陈义胜
王丽
屈忠义
关键词:  微波热解技术  生物炭产量  生物炭质量  焦油  清洁能源    
Abstract: In the process of converting biomass into biochar, microwave pyrolysis technology significantly improves the conversion efficiency of biochar and enhances its quality compared to traditional pyrolysis techniques. This paper reviews the impact of microwave pyrolysis technology on the yield and quality of biochar, highlighting that these effects are closely related to factors such as feedstock type, microwave power, and pyrolysis conditions. It demonstrates that optimizing these factors is crucial for ensuring the optimal output of biochar. Additionally, as a product of microwave pyrolysis, biochar exhibits excellent performance in tar degradation, further showcasing its significant value in clean energy applications. This paper aims to elucidate the role of microwave pyrolysis technology in enhancing biochar conversion efficiency and tar degradation, focusing on summarizing the factors affecting biochar yield and quality. It also illustrates the remarkable advantages of this technology in improving energy utilization efficiency and environmental friendliness.
Key words:  microwave pyrolysis technology    biochar yield    biochar quality    tar    clean energy
发布日期:  2025-05-29
ZTFLH:  S216  
基金资助: 国家自然科学基金(52266015;52279037);“科技兴蒙”行动重点专项巴彦淖尔国家农业高新技术产业示范区重点项目;(NMKJXM202308);内蒙古自治区直属高校基本科研业务费项目(2023QNJS041;2023QNJS042);内蒙古自治区“英才兴蒙”工程——团队项目:引黄灌区固废资源化利用与盐碱地生态修复技术创新团队;内蒙古科技大学大学生创新创业训练计划项目(202410127057)
通讯作者:  *王丽,工学博士,硕士研究生导师。目前主要从事废弃木质材料的资源化利用、绿色储能材料、木质功能吸附材料、木质材料的微波热解处理技术及产品利用的研究工作。wang.lineimeng@163.com
屈忠义,教授,博士研究生导师。目前主要从事农业水利与土壤科学理论教学与研究工作。QZY19690101@163.com   
作者简介:  张云松,现为内蒙古科技大学材料科学与工程学院研究生。目前主要的研究领域为木质材料的微波热解处理技术及产品利用,研究方向为生物质功能材料研发。
引用本文:    
张云松, 庞赟佶, 许嘉, 陈义胜, 王丽, 屈忠义. 微波热解技术在制备生物炭中的应用及研究进展[J]. 材料导报, 2025, 39(11): 24040164-7.
ZHANG Yunsong, PANG Yunji, XU Jia, CHEN Yisheng, WANG Li, QU Zhongyi. Application and Research Progress of Microwave Pyrolysis Technology in Preparing Biochar. Materials Reports, 2025, 39(11): 24040164-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040164  或          https://www.mater-rep.com/CN/Y2025/V39/I11/24040164
1 You X Y, Li Z H, Jiang H, et al. Modern Agricultural Science and Technology, 2024(3), 107 (in Chinese).
尤心雨, 李正昊, 姜华, 等. 现代农业科技, 2024(3), 107.
2 Jiang Y C, Li Q Y, Hu X. Integrated Smart Energy, 2023, 45(5), 46 (in Chinese).
蒋雨辰, 李清扬, 胡勋. 综合智慧能源, 2023, 45(5), 46.
3 Yang C. Energy Conservation and Environmental Protection, 2023(12), 32 (in Chinese).
杨晨. 节能与环保, 2023(12), 32.
4 Ge S, Yek P N Y, Cheng Y W, et al. Renewable and Sustainable Energy Reviews, 2021, 135, 110148.
5 Yek P N Y, Liew R K, Mahari W A W, et al. Science of The Total Environment, 2022, 833, 154968.
6 Kambo H S, Dutta A. Renewable and Sustainable Energy Reviews, 2015, 45, 359.
7 Kuo L A, Tsai W T, Yang R Y, et al. Processes, 2023, 11(11), 3119.
8 Liu S, Peng S, Zhang B, et al. RSC advances, 2022, 12(16), 9587.
9 Aman A M N, Selvarajoo A, Lau T L, et al. Energies, 2022, 15(20), 7662.
10 Li J, Dai J, Liu G, et al. Biomass and Bioenergy, 2016, 94, 228.
11 Hadiya V, Popat K, Vyas S, et al. Bioresource Technology, 2022, 355, 127303.
12 Wu Y, Yan Y, Wang Z, et al. Journal of Environmental Management, 2024, 351, 119775.
13 Singh P, Rawat S, Jain N, et al. Journal of Environmental Chemical Engineering, 2023, Jul 25, 110635.
14 Qiao H, Zhang S, Liu X, et al. Environmental Science and Pollution Research, 2024, 31(3), 3800.
15 Li X, Liu T, Han X, et al. Environmental Technology & Innovation, 2023, 30, 103121.
16 Zhu X, Luo Z, Zhang Q, et al. Bioresource Technology, 2023, 386, 129543.
17 Xiang W, Zhang X, Cao C, et al. Bioresource Technology, 2022, 355, 127274.
18 Zhao S, Wang X, Wang Q, et al. Ecotoxicology and Environmental Safety, 2023, 267, 115643.
19 Allende S, Liu Y, Zafar M A, et al. Waste Disposal & Sustainable Energy, 2023, 5(1), 1.
20 Sun J, Norouzi O, Mašek O. Bioresource Technology, 2022, 346, 126258.
21 Munir M T, Naqvi M, Li B, et al. Journal of Energy Storage, 2024, 82, 110477.
22 Zou R, Qian M, Wang C, et al. Chemical Engineering Journal, 2022, 441, 135972.
23 Ren J, Liu Y L. ACS Sustainable Chemistry & Engineering, 2021, 9(33), 11212.
24 Hanafi NH, Rozali S, Ibrahim S. Biomass Conversion and Biorefinery, 2024, Jan 13, 1.
25 Li X, Peng B, Liu Q, et al. Bioresource Technology, 2022, 348, 126745.
26 Zhang J, Tahmasebi A, Omoriyekomwan J E, et al. Journal of Analytical and Applied Pyrolysis, 2018, 130, 142.
27 Yang T M, Wang C. Journal of Agriculture of Yanbian University, 2023, 45(3), 95 (in Chinese).
杨添名, 王超. 延边大学农学学报, 2023, 45(3), 95.
28 Zhang X, Rajagopalan K, Lei H, et al. Sustainable Energy & Fuels, 2017, 1(8), 1664.
29 Tomczyk A, Sokołowska Z, Boguta P. Reviews in Environmental Science and Bio/Technology, 2020, 19(1), 191.
30 Wystalska K, Kwarciak-Kozłowska A. Materials, 2021, 14(7), 1644.
31 Selvarajoo, A. , & Oochit, D. Materials Science for Energy Technologies, 2020, 3, 575.
32 Nzediegwu C, Arshad M, Ulah A, et al. Bioresource Technology, 2021, 320, 124282.
33 Chatterjee R, Sajjadi B, Chen W Y, et al. Frontiers in Energy Research, 2020, 8, 85.
34 Chen D, Li Y, Cen K, et al. Bioresource Technology, 2016, 218, 780.
35 Landrat M, Abawalo M, Pikoń K, et al. Energies, 2024, 17(9), 1988.
36 Altιkat A, Alma M H, Altιkat A, et al. Sustainability, 2024, 16(2), 937.
37 Khater E S, Bahnasawy A, Hamouda R, et al. Scientific Reports, 2024, 14(1), 2625.
38 Lu W Y, Jiang X Y, Zhang A D, et al. Journal of Shandong University of Technology (Natural Science Edition), 2019, 33(4), 1 (in Chinese).
卢文玉, 姜戌雅, 张安东, 等. 山东理工大学学报(自然科学版), 2019, 33(4), 1.
39 Liu Y Y, Zhang Y H, Wang G L, et al. Biomass Chemical Engineering, 2023, 57(3), 56 (in Chinese).
刘艳艳, 张羽涵, 王贵龙, 等. 生物质化学工程, 2023, 57(3), 56.
40 Liu J. Experimentalstudy on hydrothermal carbonization of biomass waste. Master’s thesis, Zhejiang University, China, 2016 (in Chinese).
刘娟. 生物质废弃物的水热碳化试验研究. 硕士学位论文, 浙江大学, 2016.
41 Paramasivan B. Chemosphere, 2022, 286, 131631.
42 Holliday M C, Parsons D R, Zein S H. Processes, 2022, 10(9), 1756.
43 Sun X P. Rural Science and Technology, 2019, 2, 115 (in Chinese).
孙晓鹏. 乡村科技, 2019, 2, 115.
44 Kosakowski W, Bryszewska M A, Dziugan P. Materials, 2020, 13(21), 4971.
45 Fan S, Cui L, Li H, et al. International Journal of Chemical Reactor Engineering, 2023, 21(8), 1035.
46 Zuo J L, Zhang Y T, Ma X W, et al. Applied Chemical Industry, 2023, 52(9), 2708 (in Chinese).
左金龙, 张迎停, 马雪薇, 等. 应用化工, 2023, 52(9), 2708.
47 Li P, Shi X P, Song J D, et al. Chemical Industry and Engineering Progress, 2022, 41(1), 133 (in Chinese).
李攀, 师晓鹏, 宋建德, 等. 化工进展, 2022, 41(1), 133.
48 Zhang X, Ma X, Yu Z, et al. Bioresource Technology, 2022, 360, 127520.
49 Ethaib S, Omar R, Kamal S M M, et al. Processes, 2020, 8(9), 1190.
50 Li J, Tao J, Yan B, et al. Renewable and Sustainable Energy Reviews, 2021, 150, 111510.
51 Abd M F, Al Y A M. International Journal of Renewable Energy Development, 2023, 12(6), 1061.
52 Haeldermans T, Claesen J, Maggen J, et al. Journal of Analytical and Applied Pyrolysis, 2019, 138, 218.
53 Jiang Y, Li C, Zhang L, et al. Fuel Processing Technology, 2023, 245, 107696.
54 Zhao Y B, Wang X, Tong M Y. Contemporary Chemical Industry, 2013, 42(5), 544 (in Chinese).
赵延兵, 王鑫, 佟明友. 当代化工, 2013, 42(5), 544.
55 Zhang L, Zhang S P, Dong Q, et al. Chemical Industry and Engineering Progress, 2015, 34(9), 3286 (in Chinese).
张理, 张书平, 董庆, 等. 化工进展, 2015, 34(9), 3286.
56 Li G D. Experimental study on the preparation of multi-source biomass-based activated carbon. Master’s thesis, Shandong University, China, 2020 (in Chinese).
李国栋. 多源生物质基活性炭制备实验研究. 硕士学位论文, 山东大学, 2020.
57 Fang S Q, Jiang L Y, Li P, et al. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50(1), 69 (in Chinese).
方书起, 蒋璐瑶, 李攀, 等. 华中科技大学学报(自然科学版), 2022, 50(1), 69.
58 Lei H, Ren S, Julson J. Energy & Fuels, 2009, 23(6), 3254.
59 Kuo L A, Tsai W T, Yang R Y, et al. Processes, 2023, 11(11), 3119.
60 Allende S, Brodie G, Jacob M V. Energies, 2023, 16(18), 6438.
61 Liu Z, Cao W, Zhang M, et al. C - Journal of Carbon Research, 2023, 9(4), 117.
62 Altιkat A, Alma M H, Altιkat A, et al. Sustainability, 2024, 16(2), 937.
63 Syed N R, Zhang B, Mwenya S, et al. Molecules, 2023, 28(14), 5551.
64 Rex P, Mohammed I K R, Meenakshisundaram N, et al. ChemEngineering, 2023, 7(3), 50.
65 Wang K, Remón J, Jiang Z, et al. Polymers, 2024, 16(6), 851.
66 Agu O S, Tabil L G, Mupondwa E, et al. Fuels, 2022, 3(4), 588.
67 Uroić Štefanko A, Leszczynska D. Frontiers in Energy Research, 2020, 8, 138.
68 Hu Z, Wei L. Journal of Composites Science, 2023, 7(9), 354.
69 Ethaib S, Omar R, Kamal S M M, et al. Processes, 2020, 8(9), 1190.
70 Gai X, Wang H, Liu J, et al. PloS one, 2014, 9(12), e113888.
71 Elnour A Y, Alghyamah A A, Shaikh H M, et al. Applied sciences, 2019, 9(6), 1149.
72 Wallace C A, Afzal M T, Saha G C. Bioresources and Bioprocessing, 2019, 6(1), 1.
73 Yadav K, Jagadevan S. In:Recent Advances in Pyrolysis, Hassan Al-Haj Ibrahim, ed. , IntechOpen, UK, 2019, pp. 45.
74 Yan B, Jia X, Li J, et al. Journal of the Energy Institute, 2023, 4, 101477.
75 Li J, Tao J, Yan B, et al. Renewable and Sustainable Energy Reviews, 2021, 150, 111510.
76 Yang Y Q, Lu S Y. Biotechnology Progress, 2014, 4(1), 54 (in Chinese).
杨玉琼, 卢仕远. 生物技术进展, 2014, 4(1), 54.
77 Rabou L P L M, Zwart R W R, Vreugdenhil B J, et al. Energy & Fuels, 2009, 23(12), 6189.
78 Zhang M, Fan G, Liu N, et al. Journal of Analytical and Applied Pyrolysis, 2023, 169, 105843.
79 Fan M, Li C, Shao Y, et al. Journal of Environmental Chemical Engineering, 2022, 10(5), 108546.
80 Li J, Tao J, Yan B, et al. Renewable and Sustainable Energy Reviews, 2021, 150, 111510.
81 Shang S, Lan K, Wang Y, et al. Biomass Chemical Engineering, 2020, 54(6), 65 (in Chinese).
尚双, 兰奎, 王艳, 等. 生物质化学工程, 2020, 54(6), 65.
82 Yao Y, He Y F, Liu J M, et al. Modern Chemical Industry, 2016, 36(2), 12 (in Chinese).
姚瑶, 何艳峰, 刘金淼, 等. 现代化工, 2016, 36(2), 12.
83 Dong Q, Li H, Zhang S, et al. RSC Advances, 2018, 8(71), 40873.
84 Hu M, Laghari M, Cui B, et al. Energy, 2018, 145, 228.
85 Zhang L, Yao Z, Zhao L, et al. Energy, 2021, 232, 120927.
86 Ellison C, McKeown M S, Trabelsi S, et al. Energies, 2017, 10(4), 502.
87 Wang W, Lemaire R, Bensakhria A, et al. Journal of Analytical and Applied Pyrolysis, 2022, 163, 105479.
88 Pan Y, Du X, Zhu C, et al. International Journal of Hydrogen Energy, 2022, 47(80), 33966.
89 Zhou Y, Wang W, Sun J, et al. Energy, 2017, 126, 42.
90 Yaashikaa P R, Kumar P S, Varjani S, et al. Biotechnology Reports, 2020, 28, e00570.
91 Shen Y, Fu Y. Sustainable Energy & Fuels, 2018, 2(2), 326.
92 Buentello M D, Zhang X, Li J, et al. Applied Energy, 2020, 259, 114176.
[1] 何静娴, 刘建霞, 缑浩. 光热催化产氢技术的进展与讨论[J]. 材料导报, 2025, 39(11): 24010063-8.
[2] 于慧敏, 郭少红, 贾美林, 贾晶春, 常迎. 硫族半导体催化剂用于高效光催化CO2还原的研究进展[J]. 材料导报, 2025, 39(10): 24040169-9.
[3] 赵丹丹, 王舒笑, 顾菁, 单锐, 袁浩然. 基于固废炭基催化剂的稻壳热解气体提质研究[J]. 材料导报, 2021, 35(11): 11001-11006.
[4] 张瑞阳,李成金,张艾丽,周莹. 整体式光催化材料的制备及应用研究进展[J]. 材料导报, 2020, 34(3): 3001-3016.
[5] 贺欣,刘丹,王永刚,陈宇飞,张海永. 煤焦油中固体颗粒物的分析与表征*[J]. 材料导报编辑部, 2017, 31(22): 142-145.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed