Please wait a minute...
材料导报  2024, Vol. 38 Issue (12): 22090010-5    https://doi.org/10.11896/cldb.22090010
  无机非金属及其复合材料 |
熔体旋甩工艺对Mg2(Si0.4Sn0.6)Sb0.015固溶体微结构和热电性能的影响研究
刘洪亮1,2,*, 郭志迎1, 袁晓峰1, 朱尊伟1, 高倩倩1, 张忻2
1 安阳工学院材料科学与工程学院,河南 安阳 455000
2 北京工业大学新型功能材料教育部重点实验室,北京 100124
Effect of Melt Spinning Process on Microstructure and Thermoelectric Properties of Mg2(Si0.4Sn0.6)Sb0.015 Solid Solution
LIU Hongliang1,2,*, GUO Zhiying1, YUAN Xiaofeng1, ZHU Zunwei1, GAO Qianqian1, ZHANG Xin2
1 School of Materials Science and Engineering, Anyang Institute of Technology, Anyang 455000, Henan, China
2 Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing 100124, China
下载:  全 文 ( PDF ) ( 9023KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Mg2(Si,Sn)基材料是环境友好的热电材料,具有较好的应用前景。本工作采用熔体旋甩(MS)结合放电等离子烧结(SPS)技术(MS+SPS)制备了单相的Mg2(Si0.4Sn0.6)Sb0.015固溶体,通过将机械合金化(MA)与放电等离子烧结(SPS)技术(MA+SPS)结合制备的相同样品进行对比,研究MS工艺对样品微结构以及热电性能的影响。结果表明,MS得到的固溶体薄带主要由200~500 nm的小颗粒组成,将薄带研磨制粉经SPS烧结后得到的致密块体具有明显细化的晶粒和分布均匀的共格纳米析出相。与MA+SPS工艺制备的样品相比,MS+SPS制备的固溶体的迁移率明显降低,在一定温度范围内,电阻率略有升高,Seebeck系数显著增加,热导率和晶格热导率显著降低。MS+SPS制备的Mg2(Si0.4Sn0.6)Sb0.015固溶体热电性能明显提高,在643 K时其最大ZT值达到1.30。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘洪亮
郭志迎
袁晓峰
朱尊伟
高倩倩
张忻
关键词:  Mg2Si0.4Sn0.6固溶体  熔体旋甩(MS)  纳米析出相  热电性能    
Abstract: Mg2(Si, Sn)-based materials are a kind of environment-friendly thermoelectric materials with great application prospects.The single phase Mg2(Si0.4Sn0.6)Sb0.015 solid solution was prepared by melt spinning (MS) combined with spark plasma sintering (MS+SPS).By comparing with the same sample prepared by mechanical alloying (MA) combined with spark plasma sintering (MA+SPS), the effect of MS process on its microstructure and thermoelectric properties were studied.The results show that the solid solution thin belt obtained by MS is mainly composed of small particles of 200—500 nm.The obtained sinered dense buck material has obviously refined grains and uniformly distributed coherent nano precipitates.Compared with the samples prepared by MA+SPS process, the mobility of solid solution prepared by MS+SPS is significantly reduced, the resistivity increases slightly, the Seebeck coefficient increases significantly, and the thermal conductivity and lattice thermal conductivity decrease significantly.The thermoelectric properties of Mg2(Si0.4Sn0.6)Sb0.015 solid solution prepared by MS+SPS are significantly improved, and the maximum ZT value reached to 1.30 at 643 K.
Key words:  Mg2Si0.4Sn0.6 solid solution    melt spinning (MS)    nano precipitates    thermoelectric properties
出版日期:  2024-06-25      发布日期:  2024-07-17
ZTFLH:  TB34  
基金资助: 河南省科技攻关项目(2221022230020); 安阳市科技攻关项目(2021c01gx007); 河南省高等学校重点科研项目(22B430002); 安阳工学院博士启动金项目(BSJ2021004)
通讯作者:  *刘洪亮,安阳工学院材料科学与工程学院讲师,2019年北京工业大学材料科学与工程专业博士毕业。目前主要从事热电材料、电子发射材料等方面的研究工作。发表论文30余篇,包括Applied Physics Letters、Vacuum、《物理学报》等。liuhongliang@emails.bjut.edu.cn   
引用本文:    
刘洪亮, 郭志迎, 袁晓峰, 朱尊伟, 高倩倩, 张忻. 熔体旋甩工艺对Mg2(Si0.4Sn0.6)Sb0.015固溶体微结构和热电性能的影响研究[J]. 材料导报, 2024, 38(12): 22090010-5.
LIU Hongliang, GUO Zhiying, YUAN Xiaofeng, ZHU Zunwei, GAO Qianqian, ZHANG Xin. Effect of Melt Spinning Process on Microstructure and Thermoelectric Properties of Mg2(Si0.4Sn0.6)Sb0.015 Solid Solution. Materials Reports, 2024, 38(12): 22090010-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22090010  或          http://www.mater-rep.com/CN/Y2024/V38/I12/22090010
1 Shi X L, Zou J, Chen Z G. Chemical Reviews, 2020, 120(15), 7399.
2 Mao J, Chen G, Ren Z. Nature Materials, 2021, 20(4), 454.
3 Li R, Chen S, Fan W, et al. Materials Review, 2018, 32(21), 3726 (in Chinese).
李蓉, 陈少平, 樊文浩, 等. 材料导报, 2018, 32(21), 3726.
4 Liang C, Dai P. Materials Review, 2015, 29(S2), 287 (in Chinese).
梁超龙, 代平. 材料导报, 2015, 29(S2), 287.
5 Klobes B, de Boor J, Alatas A, et al. Physical Review Materials, 2019, 3(2), 025404.
6 Shiojiri D, Iida T, Kakio H, et al. Journal of Alloys and Compounds, 2022, 891, 161968.
7 Bashir M B A, Said S M, Sabri M F M, et al. Renewable and Sustainable Energy Reviews, 2014, 37, 569.
8 Li J F, Liu W S, Zhao L D, et al. NPG Asia Materials, 2010, 2(4), 152.
9 Tang X F, Xie W J, Li H, et al. Applied Physics Letters, 2007, 90, 012102.
10 Zheng Y, Xie H, Zhang Q, et al. ACS Applied Materials & Interfaces, 2020, 12(32), 36186.
11 Tan H, Guo L, Wang G, et al. ACS Applied Materials & Interfaces, 2019, 11(26), 23337.
12 Tang D, Wang G W, Zheng Y, et al. Scripta Materialia, 2016, 115, 52.
13 Zaitsev V K, Fedorov M I, Gurieva E A, et al. Thermoelectrics handbook:macro to nano, CRC Press, USA, 2005, Chapter 29.
14 Biswas K, He J, Zhang Q, et al. Nature Chemistry, 2011, 3(2), 160.
15 Liu W, Tan X, Yin K, et al. Physical Review Letters, 2012, 108(16), 166601.
16 Sales B C, Mandrus D, Chakoumakos B C, et al. Physical Review B, 1997, 56(23), 15081.
17 Caillat T, Borshchevsky A, Fleurial J P. Journal of Applied Physics, 1996, 80(8), 4442.
18 Liu W, Chi H, Sun H, et al. Physical Chemistry Chemical Physics, 2014, 16(15), 6893.
19 Dasgupta T, Stiewe C, Boor J de, et al. Physica Status Solidi A-Applications and Materials Science, 2014, 211(6), 1250.
20 Boor J de, Gupta S, Kolb H, et al. Journal of Materials Chemistry C, 2015, 3(40), 104675.
21 Khan A U, Vlachos N, Kyratsi T. Scripta Materialia, 2013, 69(8), 606.
22 Du Z, Zhu T J, Zhao X B. Materials Letters, 2012, 66(1), 76.
23 Assahsahi I, Popescu B, Enculescu M, et al. Journal of Physics and Chemistry of Solids, 2022, 163, 110561.
24 Gao P, Lu X, Berkun I, et al. Applied Physics Letters, 2014, 105(20), 202104.
25 Polymeris G S, Vlachos N, Khan A U, et al. Acta Materialia, 2015, 83, 285.
26 Sankhla A, Kamila H, Kelm K, et al. Acta Materialia, 2020, 199, 85.
[1] 吕润涛, 周张健, 白冰, 杨文. 耐老化马氏体时效不锈钢纳米析出相和逆变奥氏体调控研究进展[J]. 材料导报, 2024, 38(4): 22120065-7.
[2] 徐晨辉, 孔栋, 况志祥, 陈卓, 马燕, 邹富祥, 陈昕, 胡晓明, 冯波, 樊希安. 高性能新型Mg3(Sb,Bi)2基热电材料的发展现状[J]. 材料导报, 2023, 37(13): 21100209-10.
[3] 高然, 吴庆港, 雷乐乐, 钟定文, 海杰峰, 陆振欢. n型有机热电材料掺杂改性的研究进展[J]. 材料导报, 2022, 36(10): 21040015-11.
[4] 申兰先, 陈家莉, 李德聪, 刘文婷, 葛文, 邓书康. Yb掺杂Ⅷ型YbxBa8-xGa16Sn30笼合物的制备及热电性能[J]. 材料导报, 2020, 34(8): 8136-8140.
[5] 李鑫, 谢辉, 魏鑫, 张亚龙. Mg2Si1-xSnx合金热电性能的第一性原理计算预测[J]. 材料导报, 2020, 34(18): 18098-18103.
[6] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[7] 王怡心, 马勤, 贾建刚, 高昌琦, 张瑄瑄. Half-Heusler热电材料性能优化策略及研究进展[J]. 材料导报, 2019, 33(z1): 403-407.
[8] 李佳琪, 刘光华, 吴晓明, 贺刚, 杨增朝, 李江涛. 混料方式对燃烧合成Cu2Se的热电性能的影响[J]. 材料导报, 2019, 33(18): 3147-3151.
[9] 李怀明, 孙秋, 宋英. W掺杂对Zn0.98Al0.02O陶瓷热电性能的影响[J]. 材料导报, 2019, 33(12): 1959-1962.
[10] 袁大超, 郭双, 郝建军, 马跃进, 王淑芳. 脉冲激光沉积c轴取向BiCuSeO外延薄膜及其热电性能[J]. 材料导报, 2019, 33(1): 152-155.
[11] 冯波, 李光强, 张城诚, 李亚伟, 贺铸, 樊希安. 温差发电用BiCuSeO基热电材料的研究进展*[J]. 材料导报, 2017, 31(21): 24-31.
[12] 魏 剑, 赵莉莉, 张 倩, 聂证博. 碳纤维水泥基复合材料Seebeck效应研究现状[J]. 材料导报, 2017, 31(1): 84-89.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed