Please wait a minute...
材料导报  2024, Vol. 38 Issue (12): 22090163-8    https://doi.org/10.11896/cldb.22090163
  金属与金属基复合材料 |
不同铝合金对Al/Mg/Al层状复合材料腐蚀行为的影响
郭贺1, 焦进超1, 张津1,2,*, 王旭东1, 连勇1,2, 冯波3, 冯晓伟3, 郑开宏3, 丁啸云1, 韩东1
1 北京科技大学新材料技术研究院,北京 100083
2 腐蚀-磨蚀与表面技术北京市重点实验室,北京 100083
3 广东省科学院新材料研究所,广州 510650
Influence of Different Aluminum Alloys on Corrosion Behavior of Al/Mg/Al Laminated Composites
GUO He1, JIAO Jinchao1, ZHANG Jin1,2,*, WANG Xudong1, LIAN Yong1,2, FENG Bo3, FENG Xiaowei3, ZHENG Kaihong3, DING Xiaoyun1, HAN Dong1
1 Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2 Beijing Key Laboratory for Corrosion Erosion and Surface Technology, Beijing 100083, China
3 Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510650, China
下载:  全 文 ( PDF ) ( 22736KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将镁合金与铝合金经过热轧制成Al/Mg/Al层状复合材料,结合析氢试验、电化学试验和电偶试验,对1060/AZ31/1060、5052/AZ31/5052和6061/AZ31/6061在3.5%(质量分数)NaCl溶液中腐蚀行为进行研究,通过分析其腐蚀形貌、腐蚀产物、析氢速率、动电位极化曲线和交流阻抗谱,探究Al/Mg/Al层状复合材料的腐蚀机理。结果表明:Al/Mg/Al层状复合材料的表面腐蚀行为与铝合金的腐蚀行为相似,其相对于原始镁合金的腐蚀电流密度降低了两个数量级;Al/Mg/Al层状复合材料截面腐蚀产物呈颗粒状密集分布在镁一侧,腐蚀行为主要受电偶效应的影响,镁-铝电偶对电偶电流可达10-3 A·cm-2数量级;对应的三种镁-铝电偶对电偶电流密度和电偶电位与混合电位理论拟合值相差不大;三种Al/Mg/Al层状复合材料中5052/AZ31/5052的整体耐蚀性最好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭贺
焦进超
张津
王旭东
连勇
冯波
冯晓伟
郑开宏
丁啸云
韩东
关键词:  Al/Mg/Al层状复合材料  电化学  电偶腐蚀  析氢  腐蚀产物    
Abstract: Magnesium alloy and aluminum alloy were hot rolled to prepare Al/Mg/Al laminated composites. Combined with hydrogen evolution test, electrochemical test and galvanic test, the corrosion behavior of 1060/AZ31/1060, 5052/AZ31/5052 and 6061/AZ31/6061 in 3.5wt% NaCl solution was tested. By analyzing the corrosion morphology, corrosion products, hydrogen evolution rate, potentiodynamic polarization curve and AC impedance spectrum, the corrosion mechanism of Al/Mg/Al laminated composites was explored. The results show that the corrosion resistance of Al/Mg/Al laminated composites surface is similar to that of aluminum alloy, and the corrosion current density is reduced by two orders of magnitude compared with that of the original magnesium alloy. The corrosion products of the cross-section of the Al/Mg/Al laminated composites are distributed densely on the magnesium side, and the corrosion behavior is mainly affected by the galvanic effect. The galvanic current of the Mg-Al galvanic couples can reach the order of 10-3 A·cm-2. The galvanic current densities and galvanic potentials of the three Mg-Al galvanic couples corresponding to the Al/Mg/Al laminated composites are similar to the theoretical fitting values of the mixed potential. Among the three Al/Mg/Al laminated composites, 5052/AZ31/5052 has the best overall corrosion resistance.
Key words:  Al/Mg/Al laminated composites    electrochemical    galvanic corrosion    hydrogen evolution    corrosion products
出版日期:  2024-06-25      发布日期:  2024-07-17
ZTFLH:  TG335.81  
基金资助: 广东省基础与应用基础研究重大项目(2020B0301030006)
通讯作者:  *张津,博士,教授,博士研究生导师,全国模范教师。1988年获得硕士学位后就职于重庆大学机械传动国家重点实验室,曾任副主任。1998—1999年在英国伯明翰大学材料工程学院作访问学者。2004—2005年在美国密苏里-哥伦比亚大学作访问学者。2001年调入重庆工学院,曾任材料科学与工程学院院长,重庆市中青年骨干教师,重庆市科技顾问团顾问,重庆市首批学术带头人后备人选;2007年底调入北京科技大学,现为腐蚀-磨蚀与表面技术北京市重点实验室主任、教育部腐蚀与防护国防重点实验室副主任。主持或主研完成国家级、部省级项目60余项,已发表核心学术论文100余篇,被三大检索系统收录50余篇,获省部级奖3项,授权专利20余项,主编出版专著3本。现为中国腐蚀学会理事,中国机械工程学会表面工程分会常务理事,中国腐蚀学会高温委员会理事,中国材料学会镁合金分会常务理事。zhangjin@ustb.edu.cn   
作者简介:  郭贺,2020年6月于河南理工大学获得工学学士学位。现为北京科技大学新材料技术研究院硕士研究生,在张津教授的指导下进行研究。目前主要研究领域为镁/异质金属复合材料耐蚀行为。
引用本文:    
郭贺, 焦进超, 张津, 王旭东, 连勇, 冯波, 冯晓伟, 郑开宏, 丁啸云, 韩东. 不同铝合金对Al/Mg/Al层状复合材料腐蚀行为的影响[J]. 材料导报, 2024, 38(12): 22090163-8.
GUO He, JIAO Jinchao, ZHANG Jin, WANG Xudong, LIAN Yong, FENG Bo, FENG Xiaowei, ZHENG Kaihong, DING Xiaoyun, HAN Dong. Influence of Different Aluminum Alloys on Corrosion Behavior of Al/Mg/Al Laminated Composites. Materials Reports, 2024, 38(12): 22090163-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22090163  或          http://www.mater-rep.com/CN/Y2024/V38/I12/22090163
1 Shao H, He L, Lin H, et al. Energy Technology, 2018, 6(3), 445.
2 Wan D, Wang H, Ye S, et al. Journal of Alloys and Compounds, 2019, 782, 421.
3 Wu R, Yan Y, Wang G, et al. International Materials Reviews, Taylor and Francis, 2015, 60(2), 65.
4 Taub A I, Luo A A. MRS Bulletin, 2015, 40(12), 1045.
5 Chen Z H. Wrought magnesium alloy, Chemical Industry Press, China, 2005, pp.12 (in Chinese).
陈振华. 变形镁合金, 化学工业出版社, 2005, pp.12.
6 Chen X Z. Nonferrous Meaterials and Engineering, 2017, 38(2), 63 (in Chinese).
陈兴章. 有色金属材料与工程, 2017, 38(2), 63.
7 Nikbakt S, Kamarian S, Shakeri M. Composite Structures, 2018, 195, 158.
8 Zhang T, Xu H, Li Z J, et al. Chinese Journal of Engineering, 2021, 43(1), 67 (in Chinese).
张婷, 许浩, 李仲杰, 等. 工程科学学报, 2021, 43(1), 67.
9 Liu T, Song B, Huang G, et al. Journal of Magnesium and Alloys, 2022, 10(8), 2062.
10 Jafarian M, Khodabandeh A, Manafi S. Materials and Design, 2015, 65, 160.
11 Li X, Liang W, Zhao X, et al. Journal of Alloys and Compounds, 2009, 471(1), 408.
12 Lee K S, Lee Y S, Kwon Y N. Materials Science and Engineering:A, 2014, 606, 205.
13 Chen X, Zhang J, Xia D, et al. Journal of Alloys and Compounds, 2020, 826, 154094.
14 Feng B, Sun Z, Wu Y, et al. Journal of Alloys and Compounds, 2020, 842, 155676.
15 Jayaraj R K, Malarvizhi S, Balasubramanian V. Transactions of Nonferrous Metals Society of China, 2017, 27(10), 2181.
16 Mróz S, Gontarz A, Drozdowski K, et al. Archives of Civil and Mechanical Engineering, 2018, 18(2), 401.
17 Acharya M G, Shetty A N. Journal of Magnesium and Alloys, 2019, 7(1), 98.
18 Song G L. Corrosion and protection of magnesium alloy, Chemical Industry Press, China, 2006, pp.32 (in Chinese).
宋光铃. 镁合金腐蚀与防护, 化学工业出版社, 2006, pp.32.
19 Esmaily M, Svensson J E, Fajardo S, et al. Progress in Materials Science, 2017, 89, 92.
20 Fathi P, Rafieazad M, Mohseni-Sohi E, et al. Electrochimica Acta, 2021, 389, 138689.
21 Peng C, Cao G, Gu T, et al. Journal of Materials Research and Techno-logy, 2022, 19, 709.
22 Cao C N. An introduction to electrochemical impedance spectroscopy, Science Press, China, 2002, pp.136(in Chinese).
曹楚南. 电化学阻抗谱导论, 科学出版社, 2002, pp.136.
23 Curioni M. Electrochimica Acta, 2014, 120, 284.
24 Nakatsugawa I, Chino Y. Journal of the Electrochemical Society, 2020, 167(6), 061501.
25 Baek S M, Lee S Y, Kim J C, et al. Corrosion Science, 2021, 178, 108998.
26 Jiang B, Xiang Q, Atrens A, et al. Corrosion Science, 2017, 126, 374.
27 Yang Y, Scenini F, Curioni M. Electrochimica Acta, 2016, 198, 174.
28 Thomas S, Medhekar N V, Frankel G S, et al. Current Opinion in Solid State and Materials Science, 2015, 19(2), 85.
29 Graedel T E. Journal of the Electrochemical Society, 1989, 136(4), 204.
[1] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[2] 王越, 周本基, 徐能能, 乔锦丽. 可逆锌-空气电池锌阳极研究进展及挑战[J]. 材料导报, 2024, 38(6): 23040162-10.
[3] 苏咸凯, 解志鹏, 张达, 侯圣平, 杨斌, 梁风. 单壁碳纳米角的制备及电化学应用进展[J]. 材料导报, 2024, 38(6): 22100192-13.
[4] 李兰心, 潘牧, 郭伟. 质子交换膜燃料电池在线监测方法研究进展[J]. 材料导报, 2024, 38(6): 22070018-14.
[5] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[6] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[7] 邓开鑫, 刘澄虎, 于志庆, 黄文斌, 魏强, 周亚松. 碳化钼的结构、制备及应用研究进展[J]. 材料导报, 2024, 38(5): 22080058-18.
[8] 贾飞宏, 卫学玲, 包维维, 邹祥宇. MoS2/Ni3S2/NF双功能电催化剂用于高效全水解[J]. 材料导报, 2024, 38(4): 22040365-7.
[9] 王蜀湘, 卢星宇, 邹力, 任洁, 王留留, 谢佳乐. Si光阳极稳定性提高策略研究进展[J]. 材料导报, 2024, 38(2): 21100131-9.
[10] 高雅倩, 赵亚娟, 谢会东, 胡昌宇, 王逸博, 王康康, 杨厂. 高比电容MOF衍生的介孔球状Co3O4/NiO/CuO[J]. 材料导报, 2024, 38(12): 22110033-7.
[11] 梁咏宁, 刘务东, 赵凯, 季韬. 加速碳化条件下不同养护制度对碱矿渣混凝土钢筋锈蚀的影响[J]. 材料导报, 2024, 38(11): 22090297-8.
[12] 庄明兴, 卡盖·索音图, 付文英, 司司, 余添玉, 杨俊东, 章剑, 梁宇欣, 赵新生, 魏永生. 硼/磷掺杂电解水析氢金属催化剂的研究现状与进展[J]. 材料导报, 2023, 37(S1): 22080121-11.
[13] 赵帅凯, 李亚如, 任永鹏, 王长记, 潘昆明, 王利萌, 吕贝贝, 夏梁彬, 陈雪敏. ZIF衍生材料在ORR、OER和HER领域的应用研究进展[J]. 材料导报, 2023, 37(S1): 23010012-12.
[14] 王琼, 黄自知, 胡云楚, 袁利萍, 文瑞芝, 杨婷. 胡萝卜基分级多孔炭材料的制备及电化学性能研究[J]. 材料导报, 2023, 37(9): 21060091-7.
[15] 郑会勤, 樊耀亭. 基于两个[2Fe2S]化合物的光催化分解水产氢性能及可能的机理[J]. 材料导报, 2023, 37(9): 21050052-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed