Please wait a minute...
材料导报  2017, Vol. 31 Issue (1): 84-89    https://doi.org/10.11896/j.issn.1005-023X.2017.01.011
  材料综述 |
碳纤维水泥基复合材料Seebeck效应研究现状
魏 剑,赵莉莉,张 倩,聂证博
西安建筑科技大学材料与矿资学院,西安 710055
Development of Seebeck Effect of Carbon Fiber Reinforced Cement-based Composites
WEI Jian, ZHAO Lili, ZHANG Qian, NIE Zhengbo
College of Materials and Mineral Resources, Xi’an University of Architecture and Technology, Xi’an 710055
下载:  全 文 ( PDF ) ( 1377KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 具有显著Seebeck效应的碳纤维水泥基复合材料(Carbon fiber reinforced cement-based composites, 简写为CFRC) 近年来受到广泛关注。综述了CFRC的导电机理、Seebeck效应强化途径及其工程应用前景。CFRC的载流子类型主要包括离子、电子和空穴,并以空穴为主。碳纤维/碳纳米管掺杂,CFRC的Seebeck系数可提高至约30 μV/℃;钢纤维掺杂水泥基材料表现为n型半导体,其Seebeck可达68 μV/℃;金属氧化物Bi2O3掺杂可将CFRC的Seebeck系数稳步提高到100.28 μV/℃,而ZnO和Fe2O3掺杂可使CFRC的Seebeck系数分别增大到3 300 μV/℃和2 500 μV/℃。这些研究有效地促进了CFRC在城市室外热量的转换收集、工业余热能量收集和长寿命结构健康监测传感器等领域的研究与发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏 剑
赵莉莉
张 倩
聂证博
关键词:  碳纤维  水泥基复合材料  Seebeck效应  热电性能    
Abstract: Recently, carbon fiber reinforced cement-based composites (CFRC) has been concerned considerably due to its strong Seebeck effect. The electrical conduction mechanism, CFRC-Seebeck effect reinforcement approaches, and potential applications of CFRC are reviewed in this paper. The carrier types of CFRC is mainly related to ionic, electronic and hole carriers, and the hole carriers play the most important role. The Seebeck coefficient of about 30 μV/℃ can be obtained by adding carbon fibers or carbon nanotubes. The steel fiber reinforced cement-based composites belongs to an n-type semiconductor, and its Seebck coefficient can be increased to 68 μV/℃. The CFRC-Seebeck coefficient of 100.28 μV/℃ can be obtained by mixing Bi2O3, and the largest Seebeck coefficients of 3 300 μV/℃ and 2 500 μV/℃ can be obtained by adding ZnO and Fe2O3, respectively. These studies have effectively promoted the research and development of CFRC in the fields of urban heat harvesting, energy conservation in buildings, the waste heating collection and structural self-sensing.
Key words:  carbon fiber    cement-based composites    Seebeck effect    thermoelectric properties
               出版日期:  2017-01-10      发布日期:  2018-05-02
ZTFLH:  TB332  
基金资助: 国家自然科学基金面上项目(51578448);国家自然科学基金青年科学基金项目(51308447)
作者简介:  魏剑:男,教授,主要从事碳纤维水泥基复合材料热电性能研究 E-mail:weijian@xauat.edu.cn 赵莉莉:女,1990年生,硕士研究生,主要从事碳纤维水泥基复合材料热电性能研究 E-mail:zhaolili0216575@163.com
引用本文:    
魏 剑, 赵莉莉, 张 倩, 聂证博. 碳纤维水泥基复合材料Seebeck效应研究现状[J]. 材料导报, 2017, 31(1): 84-89.
WEI Jian, ZHAO Lili, ZHANG Qian, NIE Zhengbo. Development of Seebeck Effect of Carbon Fiber Reinforced Cement-based Composites. Materials Reports, 2017, 31(1): 84-89.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.01.011  或          http://www.mater-rep.com/CN/Y2017/V31/I1/84
1 Huang H T, Wu R J, Wang X Y, et al. Research of urban heat island effect[J]. Henan Sci,2015,33(7):1214(in Chinese).
黄宏涛,吴荣军,王晓云,等.城市热岛效应研究进展[J].河南科学,2015,33(7):1214.
2 Shi B, Tang C S, Gao L, et al. Observation and analysis of the urban heat island effect on soil in Nanjing, China[J]. Environmental Earth Sci,2012,67(1):215.
3 Sun Y M, Augenbroe G. Urban heat island effect on energy application studies of office buildings[J]. Energy Buildings,2014,77(7):171.
4 Magli S, Lodi C, Lombroso L, et al. Analysis of the urban heat island effects on building energy consumption[J]. Int J Energy Environmental Eng,2014,6(1):1.
5 Wo X Y. Comparison and elemental analysis of the performance of domestic and abroad carbon fiber[J]. Hi-Tech Fiber Application,2000,25(2):30(in Chinese).
沃西源.国内外几种碳纤维性能比较及初步分析[J]. 高科技纤维与应用,2000,25(2):30.
6 Wang S K, Sun W H. Application analysis of carbon fiber materials in the reinforced concrete flexural[J]. Jilin Electric Power,2016,44(1):36(in Chinese).
王帅坤,孙文海.碳纤维材料在混凝土受弯构件加固中的应用分析[J].吉林电力,2016,44(1):36.
7 Katz A, Bentur A. Mechanical properties and pore structure of carbon fiber reinforced cementitious composites[J]. Cem Concr Res,1994,24(2):214.
8 Park S B, Lee B I, Lim Y S. Experimental study on the engineering properties of carbon fiber reinforced cement composites[J]. Cem Concr Res,1991,21(4):589.
9 Chen P W, Chung D D L. Low-drying-shrinkage concrete containing carbon fibers[J]. Composites Part B,1996,27(3-4):269.
10 Shi Z Q, Chung D D L. Improving the abrasion resistance of mortar by adding latex and carbon fibers[J]. Cem Concr Res,1997,27(8):1149.
11 Chen P W, Chung D D L. Improving the bonding between old and new concrete by adding carbon fibers to the new concrete[J]. Cem Concr Res,1995,25(3):491.
12 Jiang S, Gao X J, Yao B. Research on manufacture and piezoresistive effect of carbon nanofiber concrete[J]. Low Temperature Architecture Technol,2015,37(1):10(in Chinese).
姜山,高小建,姚斌.纳米碳纤维混凝土制备及其压敏性能[J].低温建筑技术,2015,37(1):10.
13 Liu X Y, Yao W, Wu K R. Thermal-resistance characteristics of carbon fiber reinforced cement-based composites[J]. J Hohai University:Nat Sci,2007,35(2):202(in Chinese).
刘小艳,姚武,吴科如.碳纤维水泥基复合材料温敏特性研究[J]. 河海大学学报:自然科学版,2007,35(2):202.
14 Wang Z J, Li K Z, Wang C. Electricity characteristics of carbon fiber reinforced cement based composites(CFRC)[J]. Mater Rev:Rev,2009,23(12):47(in Chinese).
王振军,李克智,王闯.碳纤维增强水泥基复合材料(CFRC)的电学特性[J]. 材料导报:综述篇, 2009,23(12):47.
15 Tang Z Q, Li Z Q, Hou Z F, et al. Influence of setting of electrical conductive concrete heating layer on effectiveness deicing[J]. J Wuhan University of Technology,2002,24(2):45(in Chinese).
唐祖全,李卓球,侯作富,等.导电混凝土电热层布置对路面除冰效果的影响[J].武汉理工大学学报,2002,24(2):45.
16 Sun M Q, Li Z Q, Mao Q Z, et al. Thermoelectric percolation phenomena in carbon fiber-reinforced concrete[J]. Cem Concr Res,1998,28(12):1707.
17 Sun M Q, Li Z Q, Mao Q Z, et al. The main influential factors on Seebeck effect of CFRC[J]. Chinese J Mater Res,1998,12(3):329(in Chinese).
孙明清,李卓球,毛起炤,等.影响CFRC的Seebeck效应的主要因素[J]. 材料研究学报,1998,12(3):329.
18 Wen S H, Chung D D L. Seebeck effect in carbon fiber-reinforced cement[J]. Cem Concr Res,1999,29(12):1989.
19 Wen S H, Chung D D L. Erratum to “Seebeck effect in carbon fiber reinforced cement”[J]. Cem Concr Res,2004,34(12):2341.
20 Chung D D L. Cement-matrix composites for thermal engineering[J]. Appl Thermal Eng,2001,21(16):1607.
21 Bhattacharjee S, Batra A K, Cain J. Energy harvesting from pavements using pyroelectric single crystal and nano-composite based smart materials[C]//Congress of Transportation and Development Institute. Chicago,2011:741.
22 Zuo J Q, Yao W, Qin J J, et al. Measurements of thermoelectric behavior and microstructure of carbon nanotubes/carbon fiber-cement based composite[J]. Key Eng Mater,2011,492:242.
23 Pichanusakorn P, Bandaru P. Nanostructured thermoelectrics[J]. Mater Sci Eng R Reports,2010,67(2-4):19.
24 高敏. 温差电转换及其应用[M].天津:兵器工业出版社,1996.
25 Cˇern R, Němecˇková J, Rovnaníková P, et al. Effect of thermal decomposition processes on the thermal properties of carbon fiber reinforced cement composites in high-temperature range[J]. J Thermal Analysis Calorimetry,2007,90(2):475.
26 Chen Y. Energy band structures and thermoelectric transport pro-perties of Te and Sb based compounds[D]. Hangzhou: Zhejiang University,2012(in Chinese).
陈怡.碲基和锑基化合物的能带结构和热电输运特性[D].杭州:浙江大学,2012.
27 Singh A P, Mishra M, Chandra A, et al. Graphene oxide/ferro-fluid/cement composites for electromagnetic interference shielding application[J]. Nanotechnology,2011,22(46):465701.
28 Zhang Y, Zhi R T, Zhu F W, et al. Electrical properties of carbon fiber-MDF cement composite[J]. Mater Sci Prog,1992,6(4):357(in Chinese).
张跃,职任涛,朱逢吾,等.碳纤维(LCF)-无宏观缺陷(MDF)水泥基复合材料电学性能的研究[J].材料科学进展,1992,6(4):357.
29 Wang X F, Wang Y L. Smart properties of carbon fiber reinforced cement composites[J]. J Chinese Ceram Soc,1998,26(2):253(in Chinese).
王秀峰,王永兰.碳纤维增强水泥复合材料的机敏性[J].硅酸盐学报,1998,26(2):253.
30 Ren J, Lu S C, Tang F Q. The voltage-current characteristics and dispersion effect of RLW electrostatic disperser[J]. Powder Tech-nol,2003,135:261.
31 南策文.非均质材料物理[M].北京:科学出版社,2005.
32 Sun M Q, Li Z Q, Mao Q Z, et al. Study on the hole conduction phenomenon in carbon fiber-reinforced concrete[J]. Cem Concr Res,1998,28(4):549.
33 Luo W H. Preparation, microstructure and thermoelectric properties of p-type high manganese silicon compounds[D]. Wuhan: Wuhan University of Technology,2011(in Chinese).
罗文辉.p型高锰硅化合物的制备、微结构及热电性能[D].武汉:武汉理工大学,2011.
34 Sun H, Morelli D T. Thermoelectric properties of Co1-xRhxSi0.98-B0.02 alloys[J]. J Electronic Mater,2012,41(6):1125.
35 叶式中.半导体材料及其应用[M].北京:机械工业出版社,1986:179.
36 Du Y, Shen S Z, Cai K F, et al. Research progress on polymer-inorganic thermoelectric nanocomposite materials[J]. Prog Polym Sci,2012,37(6):820.
37 Sootsman J R, Chung D Y, Kanatzidis M G. New and old concepts in thermoelectric materials[J]. Angew Chem Int Ed,2009,48(46):8616.
38 Ji T, Zhang X, Li W H. Enhanced thermoelectric effect of cement composite by addition of metallic oxide nanopowders for energy harvesting in buildings[J]. Construction Building Mater,2016,115:576.
39 Li H J, Zhang S Y. A new carbon materials[J]. J New Industrialization,2016,6(1):15(in Chinese).
李贺军,张守阳.新型碳材料[J].新型工业化,2016,6(1):15.
40 Sun M Q, Li Z Q, Mao Q Z, et al. A study on thermal self-monitoring of carbon fiber reinforced concrete[J]. Cem Concr Res,1999,29(5):769.
41 Wen S H, Chung D D L. Enhancing the Seebeck effect in carbon fiber-reinforced cement by using intercalated carbon fibers[J]. Cem Concr Res,2000,30(8):1295.
42 Wen S H, Chung D D L. Effect of carbon fiber grade on the electrical behavior of carbon fiber reinforced cement[J]. Carbon,2001,39(3):369.
43 Chen B, Yao W, Wu K R. Studies on the thermoelectric properties of cement mortar with carbon fiber and micro steel fiber[J]. J Buil-ding Mater,2004,7(3):261(in Chinese).
陈兵,姚武,吴科如.掺碳纤维和微细钢纤维水泥砂浆热电性能研究[J].建筑材料学报,2004,7(3):261.
44 Wen S H, Chung D D L. Thermoelectric behavior of carbon-cement composites[J]. Carbon,2002,40(13):2495.
45 Zhao W Y, Zhang W F, Ma C H, et al. Mechanical and thermoelectric property of graphite electrically conductive concrete[J]. J Daqing Petroleum Institute,2008,32(6):83(in Chinese).
赵文艳,张文福,马昌恒,等.石墨导电混凝土力学性能与热电特性[J]. 大庆石油学院学报,2008,32(6):83.
46 Cao H Y, Yao W, Qin J J. Seebeck effect in graphite-carbon fiber cement based composite[J]. Adv Mater Res,2010,177:566.
47 Yao W, Zuo J Q, Wu K R. Microstructure and thermoelectric pro-perties of carbon nanotube-carbon fiber/cement composites[J]. J Funct Mater,2013,44(13):1924(in Chinese).
姚武,左俊卿,吴科如.碳纳米管-碳纤维/水泥基材料微观结构和热电性能[J].功能材料,2013,44(13):1924.
48 Tian M, Li F, Chen L, et al. Thermoelectric power behavior in carbon nanotubule bundles from 4.2 to 300 K[J]. Phys Rev B,1998,58(3):1166.
49 Kim P, Shi L, Majumdar A, et al. Thermal transport measurements of individual multiwalled nanotubes[J]. Phys Rev Lett,2001,87(87):1.
50 Small J P, Perez K M, Kim P. Modulation of thermoelectric power of individual carbon nanotubes[J]. Phys Rev Lett,2003,91(25):12475.
51 Dresselhaus M S, Dresselhaus G, Sun X, et al. Low-dimensional thermoelectric materials[J].Phys Solid State,1999,41(5):679.
52 Dresselhaus M S, Chen G, Tang M Y, et al. New directions for low-dimensional thermoelectric materials[J]. Adv Mater,2007,19(8):1043.
53 Majumdar A. Thermoelectricity in semiconductor nanostructures[J]. Science,2004,303(5659):777.
54 Zuo J Q, Yao W, Wu K R. Seebeck effect and mechanical properties of carbon nanotube-carbon fiber/cement nanocomposites[J]. Fullerenes Nanotubes Carbon Nanostructures,2014,23(5):383.
55 Wen S H, Chung D D L. Seebeck effect in steel fiber reinforced cement[J]. Cem Concr Res,2000,30(4):661.
56 Wen S H, Chung D D L. Effect of fiber content on the thermoelectric behavior of cement[J]. J Mater Sci,2004,39(13):4103.
57 Yao W, Xia Q. Preparation and thermoelectric properties of bismuth telluride-carbon fiber reinforced cement composites[J]. J Funct Mater,2014,45(15):15134(in Chinese).
姚武,夏强.碲化铋-碳纤维水泥基材料的制备及热电性能[J].功能材料,2014,45(15):15134.
58 Wei J, Hao L, He G P, et al. Thermoelectric power of carbon fiber reinforced cement composites enhanced by Ca3Co4O9[J]. Appl Mechan Mater,2013,320:354.
59 Wei J, Hao L, He G P, et al. Enhanced thermoelectric effect of carbon fiberreinforced cement composites by metallic oxide/cement interface[J]. Ceram Int,2014,40(6):8261.
60 Wei J, Zhang Q, Zhao L L, et al. Enhanced thermoelectric properties of carbon fiber reinforced cement composites[J]. Ceram Int,2016,42(10):11568.
61 Cheng X X, Yang Q B. The comprehensive utilization of steel slag[J]. Fly Ash Comprehensive Utilization,2010(5):45(in Chinese).
程绪想,杨全兵.钢渣的综合利用[J].粉煤灰综合利用,2010(5):45.
62 Tang Z Q, Tong C F, Qian J S, et al. Study on the Seebeck effect in steel-slag concrete[J]. J Chongqing Jianzhu University,2008,30(3):125(in Chinese).
唐祖全,童成丰,钱觉时,等.钢渣混凝土的Seebeck效应研究[J].重庆建筑大学学报,2008,30(3):125.
63 Zuo J Q, Yao W, Qin J J. Enhancing the thermoelectric properties in carbon fiber/cement composites by using steel slag[J]. Key Eng Mater,2013,539:103.
64 Chen P W, Chung D D L. Carbon-fiber-reinforced concrete as an intrinsically smart concrete for damage assessment during dynamic loading[J]. J Am Ceram Soc,1995,360(3):816.
65 Wen S H, Chung D D L. Cement-based thermocouples[J]. Cem Concr Res,2001,30(3):507.
66 Sun M Q, Li Z Q, Liu Q P, et al. A study on thermal self-diagnostic and self-adaptive smart concrete structures[J]. Cem Concr Res,2000,30(8):1251.
67 Wei J, Nie Z B, He G P, et al. Energy harvesting from solar irradiation in cities using the thermoelectric behavior of carbon fiber reinforced cement composites[J]. RSC Adv,2014,4(48):48128.
[1] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[2] 王怡心, 马勤, 贾建刚, 高昌琦, 张瑄瑄. Half-Heusler热电材料性能优化策略及研究进展[J]. 材料导报, 2019, 33(z1): 403-407.
[3] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[4] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[5] 赵雪妮, 杨建军, 何富珍, 张黎, 王瑶, 张伟刚, 刘庆瑶. 碳纤维表面处理及熔盐电镀Al涂层的研究[J]. 材料导报, 2019, 33(4): 674-677.
[6] 李晓琴, 杨潇, 丁祖德, 申林方, 杜茜. 基于UDEM-ACE方法的ECC配合比优化设计[J]. 材料导报, 2019, 33(14): 2354-2361.
[7] 李怀明, 孙秋, 宋英. W掺杂对Zn0.98Al0.02O陶瓷热电性能的影响[J]. 材料导报, 2019, 33(12): 1959-1962.
[8] 杨洁, 吴宁, 潘月秀, 朱世鹏, 焦亚男, 陈利. 环氧改性水性聚氨酯上浆剂对碳纤维/氰酸酯树脂复合材料界面性能的影响[J]. 材料导报, 2019, 33(10): 1762-1767.
[9] 袁大超, 郭双, 郝建军, 马跃进, 王淑芳. 脉冲激光沉积c轴取向BiCuSeO外延薄膜及其热电性能[J]. 材料导报, 2019, 33(1): 152-155.
[10] 罗妍钰,李才亮,陈国华. 螺旋碳纤维的制备:形貌控制与生长机理[J]. 《材料导报》期刊社, 2018, 32(9): 1442-1451.
[11] 高 伟,赵广杰. 硝酸和硝酸铈铵协同氧化改性木质活性碳纤维[J]. 《材料导报》期刊社, 2018, 32(9): 1507-1512.
[12] 邢小光, 许金余, 白二雷, 朱靖塞, 王谕贤. 纳米Fe2O3水泥基复合材料制备的响应曲面研究[J]. CLDB, 2018, 32(8): 1367-1372.
[13] 冯婷婷, 刘梁森, 马天帅, 徐志伟, 李静, 傅宏俊, 匡丽赟, 李英琳. 伽马射线辐照改性聚丙烯腈原丝及聚丙烯腈基碳纤维的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1114-1121.
[14] 邓杨芳, 范晓孟, 张根, 吴长波, 钟燕, 何爱杰, 殷小玮. 预氧化Cf/SiC陶瓷基复合材料及其构件的抗疲劳特性研究[J]. 《材料导报》期刊社, 2018, 32(4): 631-635.
[15] 刘兰燕,宋俊,程博闻,薛文池,郑云波. 木质素基碳纤维制备的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 405-411.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed