Please wait a minute...
材料导报  2024, Vol. 38 Issue (17): 23090003-6    https://doi.org/10.11896/cldb.23090003
  新型高性能磷酸镁胶凝材料 |
磷酸镁水泥基帆布力学与微观性能研究
刘雄飞1,2, 王楠1, 郝逸飞1,*, 李辉1
1 河北工业大学土木与交通学院,天津 300401
2 建筑3D打印河北省工程研究中心,天津 300401
Study on Mechanical and Microscopic Properties of Magnesium Phosphate Cement-based Canvas
LIU Xiongfei1,2, WANG Nan1, HAO Yifei1,*, LI Hui1
1 School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin 300401, China
2 Engineering Research Center on Construction 3D Printing of Hebei, Tianjin 300401, China
下载:  全 文 ( PDF ) ( 34323KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于磷酸镁水泥(MPC)快硬早强和高粘结特性,研发了应急防护型MPC帆布。研究了不同镁磷物质的量比(M/P=3~8)和水灰比(W/C=0.15~0.5)对MPC帆布抗压和抗弯强度的影响规律,并结合XRD、SEM和X-CT分析MPC在帆布中的水化反应形貌、产物和孔结构变化规律,提出MPC帆布优化设计方法。实验结果表明:M/P显著影响MPC帆布的力学性能,M/P为6时,MPC帆布在28 d龄期的抗压和抗弯强度分别达到最佳值26.65 MPa和6.20 MPa。W/C决定MPC在帆布中的水化程度,低或过高的W/C均无法保证MPC在帆布中的整体性,MPC帆布的最佳W/C为0.35,在该条件下,MPC帆布在28 d龄期的抗压和抗弯强度分别达到最高值26.90 MPa和6.30 MPa,MPC水化产物(K-鸟粪石)最多且MPC与帆布纤维界面粘结密实,孔隙率最小(7.63%),MPC帆布整体性达到最佳。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘雄飞
王楠
郝逸飞
李辉
关键词:  混凝土帆布  磷酸镁水泥  力学性能  水化过程    
Abstract: A new type of emergency protection material of MPC canvas was developed based on the characteristics of magnesium phosphate cement (MPC), fast hardening, high early strength, and excellent bonding strength. The effects of magnesium/phosphate molar ratio (M/P=3—8) and water-cement ratio (W/C=0.15—0.5) on the compressive and flexural strengths of MPC canvas were studied. The hydration morphology, product, and pore structure of MPC in canvas were analyzed by XRD, SEM, and X-CT, respectively. The optimization design method of MPC canvas was proposed. The experimental results showed that M/P significantly affected the mechanical properties of MPC canvas. When the molar ratio of M/P was 6, the compressive and flexural strengths of the MPC canvas reached the highest values of 26.65 MPa and 6.20 MPa at 28 d of age, respectively. W/C determined the hydration degree of MPC in canvas. Low or excessive W/C cannot ensure the integrity of MPC in canvas. 0.35 was the optimum W/C for MPC canvas, the compressive and flexural strengths of the MPC canvas reached the highest values of 26.90 MPa and 6.30 MPa at 28 d of age. The hydration products (K-struvite) reached the maximum content, and the interface between MPC and canvas fabric was compact. The porosity reached the minimum value of 7.63%, and the integrity of the MPC canvas was the optimum.
Key words:  concrete canvas    magnesium phosphate cement    mechanical property    hydration process
出版日期:  2024-09-10      发布日期:  2024-09-30
ZTFLH:  TU525.9  
基金资助: 国家自然科学基金(52278252;52078181); 河北省自然科学基金(E2023202258)
通讯作者:  *郝逸飞,博士,河北工业大学土木与交通学院教授、博士研究生导师、院长,国家海外引进青年人才、天津市“引进领军人才”。研究方向为防护工程特种新材料、新结构与新技术。主持国家自然科学基金面上项目、国家重点研发计划项目子课题。出版专著2部,专著章节2章,发表SCI/EI论文60余篇,SCI他引1800余次,单篇最高他引153次,H因子23。中国工程建设标准化协会《民用建筑防爆设计标准》(T/CECS 7366-2020)、《抗爆聚脲涂层标准》(编制中)主要起草人。yifei.hao@hebut.edu.cn   
作者简介:  刘雄飞,博士,教授,河北省优青,河北工业大学元光学者,土木与交通学院实验室副主任。2018年7月毕业于北京工业大学。河北省“巨人计划”创新团队成员,河北省电磁环境技术创新中心客座研究员,中国硅酸盐学会水泥基流变测试技术专家委员会委员。主持国家级、省部级自然科学基金项目5项,主持预研装备重点实验室基金军工项目1项。主要研究方向包括3D打印、新材料与结构、结构加固材料与技术。
引用本文:    
刘雄飞, 王楠, 郝逸飞, 李辉. 磷酸镁水泥基帆布力学与微观性能研究[J]. 材料导报, 2024, 38(17): 23090003-6.
LIU Xiongfei, WANG Nan, HAO Yifei, LI Hui. Study on Mechanical and Microscopic Properties of Magnesium Phosphate Cement-based Canvas. Materials Reports, 2024, 38(17): 23090003-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23090003  或          http://www.mater-rep.com/CN/Y2024/V38/I17/23090003
1 Daskiran M M, Daskiran E G, Gencoglu M. Construction and Building Materials, 2020, 264, 120224.
2 Munck D M, Tysmans T, Kadi M, et al. Construction and Building Materials, 2019, 229, 116832.
3 Li H, Chen H, Li X, et al. Powder Technology, 2019, 344, 937.
4 Bilisik K, Ozdemir H. Cement and Concrete Composites, 2021, 119, 104020.
5 Singh S B, Munjal P, Thammishetti N. Journal of Building Engineering, 2015, 4, 94.
6 Wang C L. Matrix optimization, fabric geometry effect, and durability of concrete canvas. Master's Thesis, Southeast University, China, 2021 (in Chinese).
王春霖. 混凝土帆布基体优化、织物构造影响及耐久性研究. 硕士学位论文, 东南大学, 2021.
7 Han F, Chen H, Jiang K, et al. Construction and Building Materials, 2014, 65, 620.
8 Han F, Chen H, Zhang W, et al. Journal of Industrial Textiles, 2016, 45, 1457.
9 Ma X, Mei Z, Ma P. Geotextiles and Geomembranes, 2022, 50, 708.
10 Zhang F, Chen H, Li X, et al. Composite Structures, 2017, 176, 608.
11 Zhang F Y. Mixture proportion optimization, FRP reinforcement and ballistic performance of concrete canvas. Master's Thesis, China, Southeast University, 2016 (in Chinese).
张方圆. 混凝土帆布配合比优化、FRP增强及抗侵彻性能研究. 硕士学位论文, 东南大学, 2016.
12 Bao B C. Preparation and performance of concrete canvas. Master's Thesis, Southeast University, China, 2013 (in Chinese).
鲍步传. 混凝土帆布制备技术与性能研究. 硕士学位论文, 东南大学, 2013.
13 Han F, Chen H, Li X, et al. Composite Materials, 2016, 50, 1937.
14 Yao Y, Wang H X, Diao G Z, et al. Journal of the Chinese Ceramic Society, 2019, 47(2), 207(in Chinese).
姚燕, 王宏霞, 刁桂芝, 等. 硅酸盐学报, 2019, 47(2), 207.
15 He R, Zheng X X, Wang Y, et al. Applied Chemical Industry, 2022, 51(5), 1495(in Chinese).
何锐, 郑欣欣, 王渊, 等. 应用化工, 2022, 51(5), 1495.
16 Fan J P. The preparation and performance of super high early strength cement-based materials. Master's Thesis, Southeast University, China, 2015 (in Chinese).
范建平. 超早强水泥基材料的制备与性能研究. 硕士学位论文, 东南大学, 2015.
17 Yang Q, Zhang S, Wu X. Cement and Concrete Research, 2002, 32, 165.
18 Fang B, Hu Z, Shi T, et al. Ceramics International, 2023, 49, 4001.
19 Jiang H L, Zhang J W, Li T, et al. Construction and Building Materials, 2022, 326, 126821.
20 Aldea C, Gries T, Roye A, et al. Textile reinforced concrete-state-of-the-art report of RILEM TC 201-TRC, Springer Press, Germany, 2006, pp. 292.
21 Luo H C, Ren X, Zhang Y, et al. Composite Structures, 2022, 280, 114922.
22 Wang A J, Yuan Z L, Zhang J, et al. Materials Science and Engineering, 2013, 33, 5058.
23 Liu J, Guo R H, Zhang Z Q, et al. Materials Reports, 2021, 35(23), 23068(in Chinese).
刘进, 呙润华, 张增起, 等. 材料导报, 2021, 35(23), 23068.
24 Xu B, Winnefeld F, Kaufmann J, et al. Cement and Concrete Research, 2019, 123, 105781.
25 Le-Rouzic M, Chaussadent T, Stefan L, et al. Cement and Concrete Research, 2017, 96, 27.
26 Zhang A L, Zhang L C, Yu J Y, et al. Journal of the Chinese Ceramic Society, 2020, 39(2), 422(in Chinese).
张爱莲, 张林春, 俞金艳, 等. 硅酸盐通报, 2020, 39(2), 422.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[6] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[7] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[8] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[9] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[10] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[11] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[12] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[13] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[14] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
[15] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed