Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (20): 25-29    https://doi.org/10.11896/j.issn.1005-023X.2017.020.006
  材料研究 |
预活化时间对稻壳基活性炭结构和电化学性能的影响*
宋晓岚1,2, 刘汉俊1,2, 王海波1,2, 段海龙1,2, 张颖1,2, 刘时超1,2, 周永鑫1,2, 周志海1,2
1 中南大学资源加工与生物工程学院,长沙 410083;
2 中南大学矿物材料及其应用湖南省重点实验室,长沙 410083
Effect of Pre-activation Time on Structure and Electrochemical Performance for Rice Husk-based Activated Carbon
SONG Xiaolan1,2, LIU Hanjun1,2, WANG Haibo1,2, DUAN Hailong1,2, ZHANG Ying1,2, LIU Shichao1,2, ZHOU Yongxin1,2, ZHOU Zhihai1,2
1 School of Mineral Processing and Bioengineering, Central South University, Changsha 410083;
2 Key Laboratory for Mineral Materials and Application of Hunan Province, Central South University, Changsha 410083
下载:  全 文 ( PDF ) ( 1580KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以农业废料稻壳为碳源,氢氧化钠为活化剂,采用干法两步活化法制备活性炭。X射线衍射分析表明该法能有效去除稻壳中的灰分,提高活性炭的孔隙率。扫描电镜结果表明,活性炭具有发达的孔隙结构。以活性炭制备超级电容器的电极,并组装成扣式电容器。采用恒流充放电、循环伏安、交流阻抗等测定超级电容器的电化学性能,并着重探究了预活化时间对活性炭的结构及电化学性能的影响。结果表明,预活化时间为120 min的活性炭的比电容最大,在0.25 A/g电流密度下,可达219 F/g,经过1 000次循环后,其电容保持率仍达85.4%。这表明活性炭电极具有较理想的电容特性,且循环性能稳定。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋晓岚
刘汉俊
王海波
段海龙
张颖
刘时超
周永鑫
周志海
关键词:  稻壳  活性炭  预活化时间  超级电容器  比电容    
Abstract: In this paper, agricultural waste rice husk as carbon source, sodium hydroxide as activator, dry two-step activation was used to prepare activated carbon. The results of X-ray diffraction (XRD) showed that this activation method could effectively remove ash from rice husk and improve the porosity of activated carbon. Scanning electron microscopy (SEM) revealed that the activated carbon has a developed pore structure. And then the electrode of supercapacitor was prepared with activated carbon and assembled into a button capacitor. The electrochemical performance of supercapacitor was measured by constant current charging-discharging, cyclic voltammetry (CV) and alternating current (AC) impedance. In addition, the effect of pre-activation time on structure and electrochemical properties of activated carbon was investigated. The results showed that the activated carbon with the pre-activation time of 120 min possessed the largest specific capacitance of 219 F/g at 0.25 A/g for current density. And the capacitance retention rate was as high as 85.4% after 1 000 cycles, indicating that the activated carbon electrode had ideal capacitance characteristics and stable cycling performance.
Key words:  rice husk    activated carbon    pre-activation time    supercapacitor    specific capacitance
出版日期:  2017-10-25      发布日期:  2018-05-05
ZTFLH:  TB34  
  O646  
基金资助: *湖南省国土资源厅科技计划项目(2013-14);国家大学生创新创业项目
作者简介:  宋晓岚:女,1964年生,博士,教授,博士研究生导师,主要从事无机功能材料、纳米材料研究 E-mail:songxiaolan@csu.edu.cn
引用本文:    
宋晓岚, 刘汉俊, 王海波, 段海龙, 张颖, 刘时超, 周永鑫, 周志海. 预活化时间对稻壳基活性炭结构和电化学性能的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 25-29.
SONG Xiaolan, LIU Hanjun, WANG Haibo, DUAN Hailong, ZHANG Ying, LIU Shichao, ZHOU Yongxin, ZHOU Zhihai. Effect of Pre-activation Time on Structure and Electrochemical Performance for Rice Husk-based Activated Carbon. Materials Reports, 2017, 31(20): 25-29.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.020.006  或          https://www.mater-rep.com/CN/Y2017/V31/I20/25
1 Kim T Y, Jung G, Yoo S, et al. Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores[J]. ACS Nano, 2013,7(8):6899.
2 Kaempgen M, Chan C K, Ma J, et al. Printable thin film supercapacitors using single-walled carbon nanotubes[J]. Nano Lett, 2009,9(5):1872.
3 He Y, Chen W, Gao C, et al. An overview of carbon materials for flexible electrochemical capacitors[J]. Nanoscale, 2013,5(19):8799.
4 Long J W, Bélanger D, Brousse T, et al. Asymmetric electrochemical capacitors—Stretching the limits of aqueous electrolytes[J]. MRS Bull, 2011,36(7):513.
5 Zhang X, Zhang H, Li C, et al. Recent advances in porous graphene materials for supercapacitor applications[J]. RSC Adv, 2014,4(86):45862.
6 Divyashree A, Hegde G. Activated carbon nanospheres derived from bio-waste materials for supercapacitor applications—A review[J]. RSC Adv, 2015,5(107):88339.
7 Pan H, Li J, Feng Y P. Carbon nanotubes for supercapacitor[J]. Nanoscale Res Lett, 2010,5(3):654.
8 Jung S M, Mafra D L, Lin C T, et al. Controlled porous structures of graphene aerogels and their effect on supercapacitor performance [J]. Nanoscale, 2015,7(10):4386.
9 Xing Baolin, Chen Lunjian, Zhang Chuanxiang, et al. Research progress of activated carbon electrode material for supercapacitor [J]. Mater Rev: Rev, 2010, 24(8):22(in Chinese).
邢宝林, 谌伦建, 张传祥,等. 超级电容器用活性炭电极材料的研究进展[J]. 材料导报:综述篇,2010,24(8):22.
10Zhao J, Zhang Y, Wang T, et al. Reed leaves as a sustainable silica source for 3D mesoporous nickel (Cobalt) silicate architectures assembled into ultrathin nanoflakes for high-performance supercapacitors[J]. Adv Mater Interfaces, 2015,2(2):1
11Ganesan A, Mukherjee R, Raj J, et al. Nanoporous rice husk derived carbon for gas storage and high performance electrochemical energy storage[J]. Porous Mater, 2014,21(5):839.
12Le Van K, Thi T T L. Activated carbon derived from rice husk by NaOH activation and its application in supercapacitor[J]. Prog Nat Sci: Mater Int, 2014,24(3):191.
13Teo E Y L, Muniandy L, Ng E P, et al. High surface area activated carbon from rice husk as a high performance supercapacitorelectrode[J]. Electrochim Acta, 2016,192:110.
14Wei L, Yushin G. Nanostructured activated carbons from natural precursors for electrical double layer capacitors[J]. Nano Energy, 2012,1(4):552.
15Guo Y, Yu K, Wang Z, et al. Effects of activation conditions on preparation of porous carbon from rice husk[J]. Carbon, 2003,41(8):1645.
16Song X, Zhang Y, Yan C, et al. The Langmuir monolayer adsorption model of organic matter into effective pores in activated carbon[J]. J Colloid Interface Sci, 2013,389(1):213.
17Song X, Zhang Y, Chang C. Novel method for preparing activated carbons with high specific surface area from rice husk[J]. Ind Eng Chem Res, 2012,51(46):15075.
18García N, Benito E, Guzmán J, et al. Use of p-toluenesulfonic acid for the controlled grafting of alkoxysilanes onto silanol containing surfaces: Preparation of tunable hydrophilic, hydrophobic, and super-hydrophobic silica[J]. J Am Chem Soc, 2007,129(16):5052.
19Barpanda P, Fanchini G, Amatucci G G. Structure, surface morphology and electrochemical properties of brominated activated carbons[J]. Carbon, 2011,49(7):2538.
20Oh I, Kim M, Kim J. Deposition of Fe3O4 on oxidized activated carbon by hydrazine reducing method for high performance supercapacitor[J]. Microelectron Reliab, 2015,55(1):114.
[1] 邹振羽, 刘伟, 李朋娟, 李晓丽. 共活化法制备等级多孔炭材料及其储能性能研究[J]. 材料导报, 2025, 39(3): 23080193-7.
[2] 陈美玲, 孙艳芝, 吴玉锋, 袁浩然, 潘军青. 废轮胎裂解炭黑在能源存储及转换中的应用进展[J]. 材料导报, 2024, 38(8): 23100011-11.
[3] 张佳倩, 王坤俊, 杨超, 杨颂, 上官炬, 王冰凝, 刘守军. 浸渍活性炭吸附放射性碘甲烷后失活机理研究[J]. 材料导报, 2024, 38(7): 22090123-5.
[4] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[5] 师楷雁, 白杰, 孙炜岩. 碳基电极材料的改性方法与应用进展[J]. 材料导报, 2024, 38(22): 23080167-9.
[6] 郑栋浩, 贺格平, 弥元梅, 皇甫慧君, 张慧敏, 李彦霞, 袁蝴蝶. 氧化石墨烯添加量对MoSe2复合rGO电极材料电化学性能的影响[J]. 材料导报, 2024, 38(16): 23060178-8.
[7] 高雅倩, 赵亚娟, 谢会东, 胡昌宇, 王逸博, 王康康, 杨厂. 高比电容MOF衍生的介孔球状Co3O4/NiO/CuO[J]. 材料导报, 2024, 38(12): 22110033-7.
[8] 王琼, 黄自知, 胡云楚, 袁利萍, 文瑞芝, 杨婷. 胡萝卜基分级多孔炭材料的制备及电化学性能研究[J]. 材料导报, 2023, 37(9): 21060091-7.
[9] 吴肖, 魏新莉, 赵栋, 翟文翔, 李旺. 栓皮栎软木分级多孔活性炭的制备及对亚甲基蓝的吸附[J]. 材料导报, 2023, 37(8): 21090088-7.
[10] 王赫, 胡程文, 王洪杰, 阮芳涛, 储长流. 废弃复材树脂高值化利用:超级电容器电极应用[J]. 材料导报, 2023, 37(6): 21090103-5.
[11] 江志威, 刘呈坤, 吴红, 毛雪. 静电纺柔性超级电容器电极材料的研究进展[J]. 材料导报, 2023, 37(5): 21040283-13.
[12] 白小杰, 宋生南, 卓祖优, 刘海雄, 陈燕丹. 丝瓜络基3D多级孔结构掺氮活性炭的制备及储能特性[J]. 材料导报, 2023, 37(5): 21080011-7.
[13] 周亚丽, 雷西萍, 樊凯, 于婷, 关晓琳. 冷冻干燥辅助一步碳化-活化壳聚糖基多孔碳的制备及电化学性能[J]. 材料导报, 2023, 37(5): 21090175-8.
[14] 盛蕊, 唐婷婷, 田敏, 袁舒慧, 张苏, 范壮军. 耐热酚醛树脂基活性炭的制备及其超级电容器性能研究[J]. 材料导报, 2023, 37(4): 21040224-7.
[15] 侯金瑛, 董宪姝, 马晓敏, 樊玉萍, 姚素玲. 腐植酸基活性炭对亚甲基蓝的吸附性能研究[J]. 材料导报, 2023, 37(22): 22020042-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed