Please wait a minute...
材料导报  2024, Vol. 38 Issue (11): 22070092-6    https://doi.org/10.11896/cldb.22070092
  高分子与聚合物基复合材料 |
利用聚多巴胺硅烷双重改性氮化硼提高环氧树脂复合材料热物性
于天夫1,2, 李祥1,2, 杨薛明1,2,*, 胡宗杰1,2, 季畅1,2
1 华北电力大学能源动力与机械工程学院,河北 保定 071003
2 河北省低碳高效发电技术重点实验室,河北 保定 071003
Improvement of Thermophysical Properties of Epoxy Resin Composites by Double Modification of Boron Nitride with Polydopamine Silane
YU Tianfu1,2, LI Xiang1,2, YANG Xueming1,2,*, HU Zongjie1,2, JI Chang1,2
1 School of Energy, Power and Mechanical Engineering, University of North China Electric Power, Baoding 071003, Hebei, China
2 Hebei Province Key Laboratory of Low-carbon High-efficiency Power Generation Technology, Baoding 071003, Hebei, China
下载:  全 文 ( PDF ) ( 11767KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 添加高导热无机填料可以有效改善环氧树脂(EP)的低导热性,但高填料含量往往会降低复合材料的力学性能。本研究针对少导热填料含量(小于15%(质量分数,下同))下改性氮化硼/环氧树脂复合材料的综合物性进行研究;利用多巴胺、硅烷偶联剂修饰氮化硼,将得到的改性氮化硼添加到环氧树脂中,分析了不同含量的改性填料复合材料的导热性、热稳定性和力学性能。结果表明,表面改性提高了氮化硼在树脂基质中的分散性和与树脂的相容性;与氮化硼/环氧树脂复合材料相比,改性氮化硼/环氧树脂复合材料导热系数、玻璃化转变温度、热稳定性得到了有效提高。当改性氮化硼含量为15%时,改性氮化硼/环氧树脂复合材料的导热系数为0.63 W/(m·K),为纯环氧树脂导热系数的324%,玻璃化转变温度和热分解温度(T10%)分别提高到132.34 ℃和379.68 ℃,相较于纯环氧树脂分别提高了10.44 ℃和10.2 ℃。当氮化硼填充物的质量分数为3%时,复合材料的拉伸和弯曲强度分别增加为纯环氧树脂的108%和106%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于天夫
李祥
杨薛明
胡宗杰
季畅
关键词:  环氧树脂  氮化硼  力学性能  导热系数  改性  耐热性    
Abstract: Filling epoxy resin with inorganic filler to form composite material can effectively improve the low thermal conductivity of epoxy resin, but high filler content tends to reduce the mechanical properties of composites. Thiswork examined the full set of physical characteristics of modified boron nitride/epoxy resin composites with a negligible amount of thermally conductive fillers (less than 15wt%). The thermal conductivity, thermal stability, and mechanical characteristics of modified filler composites with various contents were examined after boron nitride was modified using dopamine and silane coupling agents and added to epoxy resin. The results show that the surface modification enhances the resin's compatibility and dispersibility. The thermal conductivity, glass transition temperature, and thermal stability of the boron nitride/epoxy composites have all been significantly enhanced when compared to boron nitride/epoxy composites and modified boron nitride/epoxy composites. The glass transition temperature and thermal decomposition temperature (T10%) are increased to 132.34 ℃ and 379.68 ℃, respectively, which are 10.44 ℃ and 10.2 ℃ higher than pure epoxy when the content of modified boron nitride is 15wt%, increasing the thermal conductivity to 0.63 W/(m·K), which is increased to 324% of that of pure epoxy resin. When the boron nitride filler mass fraction was 3wt%, the composites' tensile and flexural strengths climbed to 108% and 106% of those of pure epoxy resin, respectively.
Key words:  epoxy resin    boron nitride    mechanical property    thermal conductivity    modification    heat resistance
发布日期:  2024-06-25
ZTFLH:  TB332  
基金资助: 国家自然科学基金 (52076080)
通讯作者:  *杨薛明,博士,华北电力大学动力工程系教授、博士研究生导师。1993年获得华北电力大学工学学士学位,1996年获得华北电力大学工学硕士学位,2007年获得华北电力大学工学博士学位,2009年留学美国匹兹堡大学从事博士后研究,2014年在清华大学航天航空学院从事博士后研究。现从事微纳尺度传热传质、复合材料热物性相关研究。共发表论文60余篇,其中SCI收录40余篇。xuemingyang@ncepu.edu.cn   
作者简介:  于天夫,2021 年 6 月毕业于东北电力大学,获得工学学士学位,现为华北电力大学动力工程系动力工程及工程热物理专业硕士研究生,在杨薛明教授的指导下进行研究,目前主要从事氮化硼聚合物多性能研究。
引用本文:    
于天夫, 李祥, 杨薛明, 胡宗杰, 季畅. 利用聚多巴胺硅烷双重改性氮化硼提高环氧树脂复合材料热物性[J]. 材料导报, 2024, 38(11): 22070092-6.
YU Tianfu, LI Xiang, YANG Xueming, HU Zongjie, JI Chang. Improvement of Thermophysical Properties of Epoxy Resin Composites by Double Modification of Boron Nitride with Polydopamine Silane. Materials Reports, 2024, 38(11): 22070092-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22070092  或          http://www.mater-rep.com/CN/Y2024/V38/I11/22070092
1 Zhao Y S, He Y H, Yang K R, et al. High Voltage, 2020, 5(4), 472.
2 Feng J J, Zhang X, Wang W, et al. In: 2019 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP). Washington, 2019, pp.178.
3 Lv G, Jensen E, Shen C, et al. ACS Applied Polymer Materials, 2020, 3(1), 259.
4 Ren L, Li Q, Lu J, et al. Composites Part A: Applied Science and Manufacturing, 2018, 107, 561.
5 Song J, Dai Z, Nan F, et al. Journal of Composite Materials, 2018, 53(12), 1671.
6 Gao L D, Li X, Zhang X Z, et al. Acta Materiae Compositae Sinica, 2022, 39(6), 2599 (in Chinese).
高利达, 李祥, 张效重, 等. 复合材料学报, 2022, 39(6), 2599.
7 Ma Z N, Zhong B, Wang P Q, et al. Materials Reports, 2016, 30(12), 65 (in Chinese).
马振宁, 钟博, 王培侨, 等. 材料导报, 2016, 30(12), 65.
8 He J, Wang H, Qu Q, et al. Composites Communications, 2020, 22, 100448.
9 Jena K K, Narayan R, Raju K V S N. Progress in Organic Coatings, 2015, 89, 82.
10 Guerra V, Wan C, Mcnally T. Progress in Materials Science, 2019, 100, 170.
11 Mi Y, Gou J, Liu L, et al. Nanomaterials (Basel), 2019, 9(10), 1396.
12 Xu X, Chen J, Zhou J, et al. Advanced Materials, 2018, 30(17), e1705544.
13 Wang W, Cao W R, Chen T T. Acta Materiae Compositae Sinica, 2018, 35(2), 275(in Chinese).
汪蔚, 曹万荣, 陈婷婷. 复合材料学报, 2018, 35(2), 275.
14 Song J, Dai Z, Li J, et al. High Performance Polymers, 2017, 31(1), 116.
15 Kim K, Kim M, Hwang Y, et al. Ceramics International, 2014, 40(1), 2047.
16 Zhang S, Chen W, Zhao Y, et al. Composites Part B: Engineering, 2021, 223, 1359.
17 Lule Z C, Oh H, Kim J. Polymer Testing, 2020, 86, 106495.
18 Ren J, Stagi L, Innocenzi P. Journal of Materials Science, 2020, 56(6), 4053.
19 Yang N, Xu C, Hou J, et al. RSC Advances, 2016, 6(22), 18279.
20 Ni Y, Yang D, Hu T, et al. Composites Communications, 2019, 16, 132.
21 Li G, Xing R, Geng P, et al. Polymers for Advanced Technologies, 2018, 29(1), 337.
22 Gu J, Zhang Q, Dang J, et al. Polymers for Advanced Technologies, 2012, 23(6), 1025.
23 Jin X L, Li W Z, Liu Y Y, et al. Composites Part A: Applied Science and Manufacturing, 2020, 130, 105727.
24 Liu Z, Li J, Liu X. ACS Applied Materials & Interfaces, 2020, 12(5), 6503.
[1] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[2] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[3] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[4] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[5] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[6] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[7] 张雨, 李瑜婧, 万里强, 黄发荣, 刘坐镇. 聚三唑树脂/氮化硼纳米片复合材料的制备与性能[J]. 材料导报, 2024, 38(8): 22100089-8.
[8] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[9] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[10] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[11] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[12] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[13] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[14] 陈京健, 徐能能, 芦拓, 魏群山. 锌阳极氮掺杂多孔碳表面功能层设计及可逆性研究[J]. 材料导报, 2024, 38(6): 23040217-6.
[15] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed