Please wait a minute...
材料导报  2024, Vol. 38 Issue (11): 22070011-7    https://doi.org/10.11896/cldb.22070011
  无机非金属及其复合材料 |
MU10再生混凝土承重砌块力学性能与抗冻性试验研究
齐云鹏1, 王秋生1, 秦力2,*, 商效瑀2
1 北京工业大学城市与工程安全减灾教育部重点实验室,北京 100124
2 东北电力大学建筑工程学院,吉林 吉林 132012
Experimental Study on Mechanical Properties and Frost Resistance of MU10 Recycled Concrete Load-Bearing Block
QI Yunpeng1, WANG Qiusheng1, QIN Li2,*, SHANG Xiaoyu2
1 The Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China
2 School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin 132012, Jilin, China
下载:  全 文 ( PDF ) ( 17078KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为进一步提高废弃混凝土利用率,促进严寒地区应用再生混凝土承重砌块,在分析再生骨料物理性能的基础上,考虑了100%再生粗骨料取代率、水胶比、用水量及粉煤灰掺量的影响,采用正交试验设计了C30再生混凝土配合比来制备MU10再生混凝土承重砌块,通过分析MU10再生混凝土承重砌块的力学性能,确定了MU10再生混凝土承重砌块的最佳配合比,利用环境模拟箱验证了MU10再生混凝土承重砌块的抗冻性。结果表明:再生骨料与天然骨料相比表面较粗糙,附着部分旧水泥砂浆,具有低密度,高孔隙率、吸水率和含泥量,压碎指标是天然骨料的两倍左右;MU10再生混凝土承重砌块的最佳配合比为再生粗骨料1 172 kg/m3、天然河砂578 kg/m3、水泥400 kg/m3、粉煤灰100 kg/m3、水150 kg/m3,其抗压强度为11.4 MPa,抗折强度为2.1 MPa,可用于承重及有抗震要求的砌体结构;经过50次冻融循环后,MU10再生混凝土承重砌块的质量损失为1.2%、强度损失为18.1%,抗冻性能符合要求,可以作为严寒地区新型墙体材料使用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
齐云鹏
王秋生
秦力
商效瑀
关键词:  再生骨料  再生混凝土承重砌块  配合比  力学性能  抗冻性    
Abstract: In order to further improve the utilization rate of waste concrete and promote the application of recycled concrete bearing blocks in severe cold areas, based on the analysis of the physical properties of recycled aggregate, the effects of 100% recycled coarse aggregate replacement rate, water-binder ratio, water consumption and fly ash content were considered, and the mix ratio of C30 recycled concrete was designed by orthogonal tests to prepare MU10 recycled concrete load-bearing blocks. By analyzing the mechanical properties of MU10 recycled concrete load-bearing blocks, the optimal mix ratio of MU10 recycled concrete load-bearing blocks was determined, and the frost resistance of MU10 recycled concrete load-bearing blocks was verified by environmental simulation box. The results show that compared with natural aggregate, recycled aggregate has a rougher surface, with some old cement mortar attached. It has the characteristics of low density, high porosity, water absorption and mud content, and the crushing index is about twice that of natural aggregate. The optimal mix ratio of MU10 recycled concrete load-bearing blocks is 1 172 kg/m3 recycled coarse aggregate, 578 kg/m3 natural river sand, 400 kg/m3 cement, 100 kg/m3 fly ash and 150 kg/m3 water. Its compressive strength is 11.4 MPa and flexure strength is 2.1 MPa, which can be used for load-bearing and seismic resistant masonry structures. After 50 freeze-thaw cycles, the quality loss and strength loss of MU10 recycled concrete load-bearing block are 1.2% and 18.1%, respectively. The frost resistance meets the requirements, and it can be used as a new wall material in severe cold areas.
Key words:  recycled aggregate    recycled concrete load-bearing block    mixture ratio    mechanical property    frost resistance
发布日期:  2024-06-25
ZTFLH:  TU522.3  
基金资助: 国家自然科学基金(51708091);吉林省教育厅十三五重点项目(JJKH20200123KJ)
通讯作者:  *秦力,东北电力大学建筑工程学院教授、硕士研究生导师,吉林省有突出贡献的中青年专业技术人才。2004年博士研究生毕业于大连理工大学结构工程专业。目前主要从事高掺量高强混凝土本构关系及耐久性、再生混凝土承重砌块制备及力学性能、严寒地区居住建筑围护结构节能技术等方面的研究工作。在国内外学术期刊发表论文60余篇,获批计算机软件著作权2项,已培养硕士研究生70余名。jilinql@163.com   
作者简介:  齐云鹏,2021年7月于东北电力大学获得工学硕士学位,现为北京工业大学城市建设学部博士研究生,在王秋生教授的指导下进行研究。目前主要研究领域为岩土类材料变形破坏机理及新型材料研制。
引用本文:    
齐云鹏, 王秋生, 秦力, 商效瑀. MU10再生混凝土承重砌块力学性能与抗冻性试验研究[J]. 材料导报, 2024, 38(11): 22070011-7.
QI Yunpeng, WANG Qiusheng, QIN Li, SHANG Xiaoyu. Experimental Study on Mechanical Properties and Frost Resistance of MU10 Recycled Concrete Load-Bearing Block. Materials Reports, 2024, 38(11): 22070011-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22070011  或          http://www.mater-rep.com/CN/Y2024/V38/I11/22070011
1 Wang C H, Xiao J Z. China Civil Engineering Journal, 2022, 55(5), 37 (in Chinese).
王春晖, 肖建庄. 土木工程学报, 2022, 55(5), 37.
2 Shi X S, Wang Q Y, Qiu C C, et al. Advanced Engineering Sciences, 2010, 42(S1), 170 (in Chinese).
石宵爽, 王清远, 邱慈长, 等. 工程科学与技术, 2010, 42(S1), 170.
3 Gong L, Liang Y, Gong X L, et al. Journal of Basic Science and Engineering, 2023, 31(4), 1006 (in Chinese).
贡力, 梁颖, 宫雪磊, 等. 应用基础与工程科学学报, 2023, 31(4), 1006.
4 Liu K, Fu K, Sang Y, et al. Journal of Building Engineering, 2024, 90, 109450.
5 Zhu Y G, Rong D P, Xu P Z, et al. Materials Reports, 2021, 35(4), 4074 (in Chinese).
朱亚光, 戎丹萍, 徐培蓁, 等. 材料导报, 2021, 35(4), 4074.
6 Sun D S, Li Z Y, liu K W, et al. Materials Reports, 2021, 35(11), 11027 (in Chinese).
孙道胜, 李泽英, 刘开伟, 等. 材料导报, 2021, 35(11), 11027.
7 Yang L J, Li S Q. Advances in Materials Science and Engineering, 2019, 2019(6), 12.
8 Yuan H Q, Zhu L H, Wang Y X, et al. Advances in Materials Science and Engineering, 2021, 2021(7), 13.
9 Zhou W, Lu L H, Li Z. Key Engineering Materials, 2012, 1730, 509.
10 Zhuo L, Chen B F. Bulletin of the Chinese Ceramic Society, 2013, 32(10), 2155 (in Chinese).
卓玲, 陈宝璠. 硅酸盐通报, 2013, 32(10), 2155.
11 He X X, Liang X M. Advanced Materials Research, 2014, 3381, 1004.
12 Zhu L H, Dai J, Bai G L, et al. Construction and Building Materials, 2015, 94(9), 620.
13 Yu J, Zhang F, Bai G. Materials Research Innovations, 2015, 19, 579.
14 Zhang H Z, Zheng J L. Engineering Journal of Wuhan University, 2015, 48(6), 799.
张会芝, 郑建岚. 武汉大学学报(工学版), 2015, 48(6), 799.
15 Zheng J L, Zhang H Z. Engineering Mechanics, 2015, 32(5), 51 (in Chinese).
郑建岚, 张会芝. 工程力学, 2015, 32(5), 51.
16 Zhang H Z, Zheng J L. Journal of Building Materials, 2016, 19(2), 304 (in Chinese).
张会芝, 郑建岚. 建筑材料学报, 2016, 19(2), 304.
17 Cao W Q, Huang L, Gao Q, et al. Journal of Railway Science and Engineering, 2019, 16(2), 384 (in Chinese).
曹文权, 黄靓, 高琦, 等. 铁道科学与工程学报, 2019, 16(2), 384.
18 Shang X Y, Zheng S S, Xu Q, et al. Journal of Building Materials, 2015, 18(6), 1045 (in Chinese).
商效瑀, 郑山锁, 徐强, 等. 建筑材料学报, 2015, 18(6), 1045.
19 Chen W, Liu M, Zhang M L, et al. Journal of Central South University(Science and Technology), 2021, 52(11), 4063 (in Chinese).
陈伟, 刘蜜, 张明亮, 等. 中南大学学报(自然科学版), 2021, 52(11), 4063.
20 Chen W, Ying Z M Y, Zhang M L, et al. Earthquake Engineering and Engineering Dynamics, 2021, 41(4), 120 (in Chinese).
陈伟, 应湛梦云, 张明亮, 等. 地震工程与工程振动, 2021, 41(4), 120.
21 Qin L, Ding J N, Zhu J S. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(6), 133 (in Chinese).
秦力, 丁婧楠, 朱劲松. 农业工程学报, 2017, 33(6), 133.
22 Zheng C L, Li S X, Hou Y F, et al. Reviews on Advanced Materials Science, 2022, 61(1), 711.
23 Chen A J, Wang J, Ma Y. Acta Materiae Compositae Sinica, 2015, 32(4), 933 (in Chinese).
陈爱玖, 王静, 马莹. 复合材料学报, 2015, 32(4), 933.
24 Xie G L, Shen X D, Liu J Y, et al. Composites Science and Engineering, 2021(4), 55 (in Chinese).
解国梁, 申向东, 刘金云, 等. 复合材料科学与工程, 2021(4), 55.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[6] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[7] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[8] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[9] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[10] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[11] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[12] 杨淑雁, 徐盼盼, 宋俊杰, 陈小龙. 基于离差最大化-灰色关联的修补混凝土配合比评价[J]. 材料导报, 2024, 38(6): 22040151-7.
[13] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[14] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[15] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed