Please wait a minute...
材料导报  2024, Vol. 38 Issue (16): 23040213-10    https://doi.org/10.11896/cldb.23040213
  高分子与聚合物基复合材料 |
甲基取代二芳基氧化膦阻燃改性环氧树脂的研究
吴妹, 徐晓磊, 李晓, 刘玖红, 于光睿, 段好东, 韩玉玺, 于青, 王忠卫*
山东科技大学材料科学与工程学院,山东 青岛 266590
Study on Methyl Substitued Diarylphosphine Oxide Flame Retardant Modified Epoxy Resin
WU Mei, XU Xiaolei, LI Xiao, LIU Jiuhong, YU Guangrui, DUAN Haodong, HAN Yuxi, YU Qing, WANG Zhongwei*
College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
下载:  全 文 ( PDF ) ( 15019KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过苯基二氯化膦(DCPP)分别与甲苯和间二甲苯反应,制备了(4-甲苯基)苯基氧化磷(4-MPO)和(2,4-二甲苯基)苯基氧化磷(2,4-DMPO)两种新化合物。以目标化合物为反应型阻燃剂合成了双酚A型含磷环氧,并进一步制备了4,4′-二氨基二苯砜固化的阻燃环氧树脂。分别测试阻燃环氧树脂的热稳定性、阻燃性、吸水性、介电性能,并研究了阻燃机理。结果表明:两种阻燃剂均能提高环氧树脂的阻燃性,其中2,4-DMPO阻燃EP的效率更高。4-MPO改性环氧树脂的磷含量为0.9%(质量分数,下同)时,其极限氧指数(LOI)达到31.5%并通过UL-94 V-0等级,2,4-DMPO改性环氧树脂的磷含量为0.6%时,其极限氧指数(LOI)达到30.3%并通过UL-94 V-0等级。与未改性环氧树脂相比,4-MPO和2,4-DMPO改性环氧树脂的热稳定性、Tg和吸水性都有所下降,但介电性能明显提高,2,4-DMPO改性环氧树脂表现出更高的阻燃性和更好的介电性能。阻燃机理研究表明,两个阻燃剂均通过气相和固相阻燃机理发挥作用,并以气相机理为主。以上结果表明,两种化合物均可作为环氧树脂的良好阻燃剂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴妹
徐晓磊
李晓
刘玖红
于光睿
段好东
韩玉玺
于青
王忠卫
关键词:  环氧树脂  阻燃剂  二苯基氧化膦  介电性能  阻燃性能    
Abstract: Two new compounds, (4-methylphenyl) phenylphosphine oxide (4-MPO) and (2, 4-dimethylphenyl) phenylphosphine oxide (2, 4-DMPO) were synthesized by the reaction of phenylphosphorus dichloride (DCPP) with toluene and meta-xylene, respectively. The target compounds were introduced as reactive flame retardants into bisphenol A epoxy resin to prepare phosphorus-containing epoxy and flame retardant epoxy resin cured by 4, 4′-diaminodiphenylsulfone was further prepared. Thermal stability, flame retardancy, water absorptivity and dielectric property of the flame retardant epoxy resin were tested, and the flame retardant mechanism was studied. It was found that the two flame retardants can effectively improve the flame retardancy of epoxy resin, the 2, 4-DMPO exhibits higher flame retardant efficiency. The resulting flame retar-dant EP achieved a LOI of 31.5% and a UL-94 V-0 rating when the 4-MPO modified epoxy resin phosphorus content was 0.9% (mass fraction, the same below), while the flame retardant EP demonstrated a LOI of 30.3% and received a UL-94 V-0 rating when the phosphorus content of the 2, 4-DMPO modified epoxy resin was 0.6%. Compared with unmodified epoxy, the thermal stability, Tg and water absorptivity were slightly decreased, but the dielectric property was significantly improved.2, 4-DMPO modified epoxy resin showed higher flame retardancy and better dielectric property. The two flame retardants both act through gas phase and solid phase flame retardant mechanism, and the gas phase mechanism plays an important role.
Key words:  epoxy resin    flame retardant    diphenylphosphine oxide    dielectric property    flame retardant property
出版日期:  2024-08-25      发布日期:  2024-09-10
ZTFLH:  TQ314.24  
基金资助: 山东省自然科学基金(ZR2020LFG002;ZR2020QB023)
通讯作者:  *王忠卫,山东科技大学材料科学与工程学院教授,2001年7月于山东省青岛科技大学获得硕士学位,2004年8月于北京市北京理工大学获得博士学位。2004年8月至今于山东科技大学材料科学与工程学院任教,主要从事功能高分子材料改性、有机磷阻燃剂、光引发剂研究等开发及应用工作。以第一作者或通信作者发表SCI论文20余篇;以第一发明人授权国家发明专利6件。wangzhongwei@sdust.edu.cn   
作者简介:  吴妹,2021年6月于山东省德州学院获得工学学士学位,2024年6月于山东科技大学材料科学与工程学院获得工程硕士学位。曾在王忠卫教授的指导下进行低卤阻燃液态环氧树脂的合成与应用研究。
引用本文:    
吴妹, 徐晓磊, 李晓, 刘玖红, 于光睿, 段好东, 韩玉玺, 于青, 王忠卫. 甲基取代二芳基氧化膦阻燃改性环氧树脂的研究[J]. 材料导报, 2024, 38(16): 23040213-10.
WU Mei, XU Xiaolei, LI Xiao, LIU Jiuhong, YU Guangrui, DUAN Haodong, HAN Yuxi, YU Qing, WANG Zhongwei. Study on Methyl Substitued Diarylphosphine Oxide Flame Retardant Modified Epoxy Resin. Materials Reports, 2024, 38(16): 23040213-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040213  或          http://www.mater-rep.com/CN/Y2024/V38/I16/23040213
1 Huo S Q, Liu Z T, Wang J. Journal of Thermal Analysis and Calorimetry, 2019, 139(2), 1099.
2 Zhang W W, Wu H J, Meng W H, et al. High Performance Polymers, 2019, 32(4), 359.
3 Wang C H, Zhang Y Q, Yang C X. Journal of Technology, 2022, 22(4), 321 (in Chinese).
王承慧, 张英强, 杨晨熙, 等. 应用技术学报, 2022, 22(4), 321.
4 Liu W, Chen K P, Zhao X L. Journal of Chongqing Technology and Business University (Natural Science Edition), 2022, 39(3), 1 (in Chinese).
刘文, 陈可平, 赵秀丽. 重庆工商大学学报(自然科学版), 2022, 39(3), 1.
5 Liu L C, Zhang W C, Yang R J. Polymers for Advanced Technologies, 2020, 31(9), 2058.
6 Yang D Q, Dong L M, Hou X D, et al. Polymers for Advanced Technologies, 2019, 31(1), 135.
7 Wei Z Q, Gu X T, Wu J, et al. Fire and Materials, 2019, 43(7), 892.
8 Zhao J J, Xu D, Huang S, et al. Polymer Degradation and Stability, 2018, 156, 89.
9 Huang S, Hou X, Li J J, et al. High Performance Polymers, 2017, 30, 1229.
10 Mei F C, Zhao J J, Tian C, et al. Engineering Plastics Application, 2021, 49(12), 123 (in Chinese).
梅凤策, 赵君静, 田冲, 等. 工程塑料应用, 2021, 49(12), 123.
11 Shang W H, Jiang H. High Performance Polymers, 2020, 32, 793.
12 Chen T, Peng C H, Liu C, et al. Macromolecular Materials and Engineering, 2019, 304, 1800498.
13 Na T Y, Jiang H, Liu X, et al. European Polymer Journal. 2018, 100, 96.
14 小椋一郎. DIC Technical Review, 2001, 7, 16.
15 Chang H C, Lin H T, Lin C H, et al. Polymer Degradation and Stability, 2013, 98, 102.
16 Wang P, Xia L, Jian R, et al. Polymer Degradation and Stability, 2018, 149, 69.
17 Hu P, Zheng X, Zhu J, et al, Polymers for Advanced Technologies, 2020, 31(11), 2480.
18 Xu S J, Xu Z Y, Hou Z M, et al. Materials Reports, 2023, 37(20), 259 (in Chinese).
许松江, 许志彦, 侯泽明, 等. 材料导报, 2023, 37(20), 259
19 Wang P, Yang F S, Cai Z S. Journal of Thermal Analysis and Calorimetry, 2017, 128, 1429.
20 Zhu Z M, Lin P L, Wang H, et al. Journal of Materials Science, 2020, 55(27), 12836.
21 Luo H Q, Rao W H, Zhao P, et al. Polymer Degradation and Stability, 2020, 178, 109195.
22 Wang R, Zhuo D X, Weng Z X, et al, Journal of Materials Chemistry A, 2015, 3(18), 9826.
23 Cao J, Duan H, Zou J, et al. Polymer Degradation and Stability, 2021, 187, 109548.
24 Chen Q J, Liu Z, Rong Z, et al. Transactions of China Pulp and Paper, 2022, 37(3), 62 (in Chinese).
陈启杰, 刘茁, 荣智, 等. 中国造纸学报, 2022, 37(3), 62.
25 Xu Y J, Shi X H, Lu J H, et al, Composites Part B: Engineering, 2020, 184, 107673.
26 Ye X, Li J, Zhang W, et al, Composites Part B: Engineering, 2020, 191, 107961
[1] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[2] 杨菊香, 贾园, 马文建, 李朋娜, 屈颖娟. 互穿网络结构的二氧化硅/环氧树脂复合材料的制备及介电性能研究[J]. 材料导报, 2024, 38(5): 22080082-6.
[3] 何丽红, 马悦帆, 杨克, 徐心硕, 李青林. 水性有机硅改性环氧树脂的制备与性能[J]. 材料导报, 2024, 38(3): 22050109-5.
[4] 张鹏伟, 宋惠, 白慧萍, 易剑, 江南, 西村一仁. 太赫兹行波管用金刚石输能窗研究进展[J]. 材料导报, 2024, 38(16): 22120014-9.
[5] 李嘉, 肖鹏, 范思源, 周壹伍. 基于表面能理论的粘结剂-UHPC粘结失效模式分析[J]. 材料导报, 2024, 38(14): 23030069-7.
[6] 王海燕, 咸龙帝, 尚天蓉, 姚佳岐, 燕小斌, 李澜. BT@PANI核壳粒子的绿色制备及PVDF基复合材料的介电性能[J]. 材料导报, 2024, 38(13): 22120173-6.
[7] 于天夫, 李祥, 杨薛明, 胡宗杰, 季畅. 利用聚多巴胺硅烷双重改性氮化硼提高环氧树脂复合材料热物性[J]. 材料导报, 2024, 38(11): 22070092-6.
[8] 朱刚建, 李文晓. 核壳颗粒增韧改性环氧树脂基体研究评述[J]. 材料导报, 2024, 38(10): 22120066-9.
[9] 赵明明, 王继辉, 倪爱清, 陈俊磊, 王昌增, 邬志超. 阻燃改性环氧树脂的抗紫外老化研究[J]. 材料导报, 2024, 38(1): 22080234-7.
[10] 刘圣洁, 林钰, 李梦然, 周胜波. 基于MSCR试验的温拌阻燃沥青高温性能评价与分级[J]. 材料导报, 2023, 37(9): 21060064-6.
[11] 鲁玉鑫, 卢林刚. 聚磷酸铵-单宁酸-三聚氰胺/环氧树脂复合材料的阻燃及力学性能[J]. 材料导报, 2023, 37(9): 21090236-8.
[12] 张进, 谭璐, 邢宝岩, 李作鹏, 赵建国, 屈文山, 张璐. 环氧导电胶的反应动力学及其应用[J]. 材料导报, 2023, 37(8): 22020025-6.
[13] 耿亚茹, 杨国超, 徐冰冰, 张求慧. 利用静电吸附构建生物基核壳阻燃剂用于阻燃改性牛皮纸[J]. 材料导报, 2023, 37(5): 21070085-7.
[14] 章国涛, 高艳, 刘书利, 孟德喜, 高娜燕, 郑勇. 低介电损耗Ca1-xSrxMgSi2O6微波介质陶瓷的结构和介电性能[J]. 材料导报, 2023, 37(4): 21080295-5.
[15] 张城皓, 王硕珏, 田琳, 谷潇夏, 曹可, 张龙, 马灿坤, 王连才, 马慧玲, 张秀芹. 环氧树脂/碳化硼复合材料耐辐射和热老化性能研究[J]. 材料导报, 2023, 37(23): 22040049-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed