Please wait a minute...
材料导报  2025, Vol. 39 Issue (12): 24050030-7    https://doi.org/10.11896/cldb.24050030
  高分子与聚合物基复合材料 |
基于Johnson-Cook模型的盆式绝缘子环氧树脂材料裂纹缺陷扩展行为研究
段忆盟1, 杨昊1,2,*, 王鑫1, 黄骏1, 赵思瑞1, 周福升2,3, 高超3
1 西安工程大学电子信息学院,西安 710048
2 西安交通大学电气工程学院,西安 710049
3 特高压技术与新型电气设备基础工程技术研究中心,昆明 651705
Johnson-Cook Model-based Study on Crack Initiation and Propagation Behavior of Epoxy Resin in GIS Spacers
DUAN Yimeng1, YANG Hao1,2,*, WANG Xin1, HUANG Jun1, ZHAO Sirui1, ZHOU Fusheng2,3, GAO Chao3
1 School of Electronics and Information, Xi’an Polytechnic University, Xi’an 710048, China
2 School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
3 National Engineering Research Center of UHV Technology and Novel Electrical Equipment Basis, Kunming 651705, China
下载:  全 文 ( PDF ) ( 19095KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 气体绝缘开关(GIS)盆式绝缘子环氧树脂材料在设计安装过程中表面可能产生微小裂纹,随着盆式绝缘子在各种极端工况运行中裂纹逐渐扩大,其长期安全稳定运行将面临极大的威胁。本工作基于弹塑性断裂力学Johnson-Cook理论,运用ABAQUS有限元设置环氧树脂力学参数,并联合FRANC3D和ABAQUS进行仿真,对含裂纹的环氧树脂试样开展裂纹缺陷扩展分析,分别预测含不同方向边缘穿透裂纹平板在不同疲劳载荷、不同应力比、不同裂纹形状下的裂纹扩展路径和裂纹扩展寿命。结果表明,应力比0.1与应力比0.3相比裂纹扩展寿命减小不到1/2,应力比直接影响裂纹尖端处的应力强度因子。边缘初始裂纹角度并未改变裂纹扩展方向,当切应力同时作用时,裂纹扩展方向发生明显变化,疲劳寿命从3.31×107 s降至1.72×105 s,圆形裂纹扩展寿命是方形裂纹的10倍左右。由此得出结论:增加应力比和边缘裂纹角度能有效延长盆式绝缘子的使用寿命,含方形裂纹的环氧树脂相较含圆形裂纹的疲劳寿命更短,切应力较拉应力更具破坏性。本工作可为盆式绝缘子疲劳寿命研究提供数据支撑及理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
段忆盟
杨昊
王鑫
黄骏
赵思瑞
周福升
高超
关键词:  环氧树脂  三维裂纹  扩展寿命  应力强度因子    
Abstract: Micro cracks may occur on the surface of the epoxy resins of the GIS spacers during the design and installation process. As the cracks gra-dually expand during the insulators’ service in various extreme working conditions, which poses a great threat to the long-term safe and stable operation of GIS. Based on the Johnson-Cook theory of elastic-plastic fracture mechanics, this work employed ABAQUS finite element to set the mechanical parameters of epoxy resin, and combined the joint simulation method of FRANC3D and ABAQUS to conduct extended analysis of epoxy resin specimens containing cracks. The crack propagation path and crack propagation life of flat plates containing edge penetration cracks in different directions under different fatigue loads, different stress ratios, and different crack shapes were predicted. The results showed that compared with stress ratio 0.1 and stress ratio 0.3, the crack propagation life was reduced by less than half, and the stress ratio directly affected the stress intensity factor at the crack tip. In addition, the initial crack angle at the edge did not change the crack expansion direction. When shear stress was applied at the same time, the crack expansion direction changed significantly, and the fatigue life changed from 3.31×107 s to 1.72×105 s, thereby led to a time consumption for the propagation of a circular crack 900% larger than that for the propagation of a square crack. It could then be concluded that, increasing the stress ratio and edge crack angle effectively results in rise of service life of GIS spacers;epoxy containing square cracks is inferior in fatigue life to that containing circular cracks;shear stress is more destructive than tensile stress to insulator materials. The output of this work may provide data support and theoretical basis for subsequent studies about fatigue life of GIS spacers.
Key words:  epoxy resin    three-dimensional crack    extended life    stress intensity factor
出版日期:  2025-06-25      发布日期:  2025-06-19
ZTFLH:  TE319  
基金资助: 国家自然科学基金(52107028);特高压电力技术与新型电工装备基础国家工程研究中心开放基金(NERCUTNEEB-2022-KF-07)
通讯作者:  *杨昊,博士,西安工程大学电子信息学院副教授,硕士研究生导师。主要从事高电压与绝缘技术等方面的研究。yanghao@xpu.edu.cn   
作者简介:  段忆盟,西安工程大学电子信息学院硕士研究生,主要研究领域为电工材料性能诊断技术。
引用本文:    
段忆盟, 杨昊, 王鑫, 黄骏, 赵思瑞, 周福升, 高超. 基于Johnson-Cook模型的盆式绝缘子环氧树脂材料裂纹缺陷扩展行为研究[J]. 材料导报, 2025, 39(12): 24050030-7.
DUAN Yimeng, YANG Hao, WANG Xin, HUANG Jun, ZHAO Sirui, ZHOU Fusheng, GAO Chao. Johnson-Cook Model-based Study on Crack Initiation and Propagation Behavior of Epoxy Resin in GIS Spacers. Materials Reports, 2025, 39(12): 24050030-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050030  或          https://www.mater-rep.com/CN/Y2025/V39/I12/24050030
1 Luo C X, Qiu H, Sun Y H, et al. High Voltage Apparatus, 2024, 60(3), 101 (in Chinese).
罗传仙, 邱虎, 孙亚辉, 等. 高压电器, 2024, 60(3), 101.
2 Zhang S L, Yao Q, Miao Y L, et al. Insulators and Surge Arresters, 2017(6), 209 (in Chinese).
张施令, 姚强, 苗玉龙, 等. 电瓷避雷器, 2017(6), 209.
3 Wang Y Q, Hu F F, Li C Y, et al. Insulating Materials, 2017, 50(1), 78 (in Chinese).
王永强, 胡芳芳, 李长元, 等. 绝缘材料, 2017, 50(1), 78.
4 Zhang X Y, Zhang X M, Zuo X J, et al. Electrical Engineering, 2021, 22(8), 48(in Chinese).
张星宇, 张小明, 左秀江, 等. 电气技术, 2021, 22(8), 48.
5 Kirsch G. Verein Deutscher Ingenieure (VDI)(English:Association of German Engineers), 1898, 42, 1.
6 Inglis C. Proceedings of the Institution of Naval Architects, 1913, 55, 219.
7 Gao C R, Liu X H, Du L X, et al. Journal of Northeastern University (Natural Science Edition), 2008(11), 1568 (in Chinese).
高彩茹, 刘相华, 杜林秀, 等. 东北大学学报(自然科学版), 2008(11), 1568.
8 Muskhelishvili N. Some basic problems in the theory of elasticity, Netherlands:Noordhoff, Ltd, 1953.
9 An Z W, Liu X G, Gao J X. Journal of Lanzhou University of Technology, 2014, 40(6), 45 (in Chinese).
安宗文, 刘小刚, 高建雄. 兰州理工大学学报, 2014, 40(6), 45.
10 Wang J G, Li L, Wang L Q, et al. Journal of University of Science and Technology Beijing, 2011, 33(6), 734 (in Chinese).
王建国, 李璐, 王连庆, 等. 北京科技大学学报, 2011, 33(6), 734.
11 Yang B, Li Y, Qin Y, et al. Materials (Basel), 2020, 13(10), 2228.
12 Jia C, Zhang S Z. Journal of System Simulation, 2006(12), 3399 (in Chinese).
贾超, 张树壮. 系统仿真学报, 2006(12), 3399.
13 Lu S Y, Wang S, Liu Z C, et al. Insulating Materials, 2022, 55(12), 104 (in Chinese).
鲁少阳, 王爽, 刘展程, 等. 绝缘材料, 2022, 55(12), 104.
14 Wu Q, Yuan Z B, Sun R C, et al. Electrotechnics Electric, 2023(5), 58 (in Chinese).
武奇, 袁志兵, 孙荣春, 等. 电工电气, 2023(5), 58.
15 Zhuang C, Yuan C Z, Zeng J B. Insulators and Surge Arresters, 2020(2), 183 (in Chinese).
庄丞, 袁传镇, 曾建斌. 电瓷避雷器, 2020(2), 183.
16 He L L, Liu Z F, Gu J J, et al. Journal of Northwestern Polytechnical University, 2019, 37(4), 737 (in Chinese).
何龙龙, 刘志芳, 顾俊杰, 等. 西北工业大学学报, 2019, 37(4), 737.
17 Kinloch A J, Jones R, Michopoulos J G. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2021, 379(2203), 20200436.
18 Xiong X, Yang Y, Wang Z, et al. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2020, 44(3), 506 (in Chinese).
熊勋, 杨莹, 汪舟, 等. 武汉理工大学学报(交通科学与工程版), 2020, 44(3), 506.
19 Tang S B, Huang R Q, Tang C A, et al. China Civil Engineering Journal, 2016, 49(9), 87 (in Chinese).
唐世斌, 黄润秋, 唐春安, 等. 土木工程学报, 2016, 49(9), 87.
20 Liu Y H. Journal of Guizhou University of Technology, 2003(1), 4 (in Chinese).
刘艳红. 贵州工业大学学报, 2003(1), 4.
21 Li X X. Study on fracture propagation based on maximum energy release rate theory. Master’s Thesis, Northeast Petroleum University, China, 2019 (in Chinese).
李晓璇. 基于最大能量释放率理论的裂缝扩展转向研究. 硕士学位论文, 东北石油大学, 2019.
22 Li K G, Wang T, Qin Q C, et al. Chinese Journal of Applied Mechanics, 2020, 37(6), 2664 (in Chinese).
李克钢, 王庭, 秦庆词, 等. 应用力学学报, 2020, 37(6), 2664.
23 Zhao L, Guo C S, Du G H, et al. Scientific and Technological Innovation, 2023(20), 174 (in Chinese).
赵璐, 郭昌盛, 杜光华, 等. 科学技术创新, 2023(20), 174.
24 Ni X G, Li X L, Wang X X. Pressure Vessel Technology, 2006(12), 8 (in Chinese).
倪向贵, 李新亮, 王秀喜. 压力容器, 2006(12), 8.
25 Chapetti M D, Gubeljak N, Kozak D. Materials(Basel), 2023, 16(17), 5874.
26 Zhang P, Li J, Zhao Y, et al. Scientific Reports, 2023, 13(1), 14567.
27 Noraphaiphipaksa N, Manonukul A, Kanchanomai C. Materials (Basel), 2017, 10(2), 155.
[1] 周涛, 张笑晴, 陈家荣, 杨晨艺, 雷彩红. 厚朴酚基形状记忆环氧树脂的制备及性能研究[J]. 材料导报, 2025, 39(11): 24020002-7.
[2] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[3] 杨菊香, 贾园, 马文建, 李朋娜, 屈颖娟. 互穿网络结构的二氧化硅/环氧树脂复合材料的制备及介电性能研究[J]. 材料导报, 2024, 38(5): 22080082-6.
[4] 王万祯. Q460C钢缺口板的疲劳裂纹萌生寿命计算模型和总疲劳寿命计算[J]. 材料导报, 2024, 38(4): 23010056-8.
[5] 何丽红, 马悦帆, 杨克, 徐心硕, 李青林. 水性有机硅改性环氧树脂的制备与性能[J]. 材料导报, 2024, 38(3): 22050109-5.
[6] 周铭钰, 刘曙光, 吴超凡, 刘军, 张恒龙, 张帅, 李启石. 基于水性环氧乳化沥青的超薄磨耗层级配设计及性能对比研究[J]. 材料导报, 2024, 38(24): 23110085-8.
[7] 刘圣洁, 曹旭, 张钰林, 傅永腾, 焦晓东. 水性环氧树脂复合改性乳化沥青固化行为及性能研究[J]. 材料导报, 2024, 38(24): 23090085-7.
[8] 颜蜀雋, 谭雅莉, 庞忠荣, 万鹏颖, 齐福刚. 六方氮化硼负载纳米氧化铝复合填料的制备及改性环氧涂层的防腐性能研究[J]. 材料导报, 2024, 38(20): 22110089-6.
[9] 吴妹, 徐晓磊, 李晓, 刘玖红, 于光睿, 段好东, 韩玉玺, 于青, 王忠卫. 甲基取代二芳基氧化膦阻燃改性环氧树脂的研究[J]. 材料导报, 2024, 38(16): 23040213-10.
[10] 李嘉, 肖鹏, 范思源, 周壹伍. 基于表面能理论的粘结剂-UHPC粘结失效模式分析[J]. 材料导报, 2024, 38(14): 23030069-7.
[11] 于天夫, 李祥, 杨薛明, 胡宗杰, 季畅. 利用聚多巴胺硅烷双重改性氮化硼提高环氧树脂复合材料热物性[J]. 材料导报, 2024, 38(11): 22070092-6.
[12] 朱刚建, 李文晓. 核壳颗粒增韧改性环氧树脂基体研究评述[J]. 材料导报, 2024, 38(10): 22120066-9.
[13] 赵明明, 王继辉, 倪爱清, 陈俊磊, 王昌增, 邬志超. 阻燃改性环氧树脂的抗紫外老化研究[J]. 材料导报, 2024, 38(1): 22080234-7.
[14] 鲁玉鑫, 卢林刚. 聚磷酸铵-单宁酸-三聚氰胺/环氧树脂复合材料的阻燃及力学性能[J]. 材料导报, 2023, 37(9): 21090236-8.
[15] 张进, 谭璐, 邢宝岩, 李作鹏, 赵建国, 屈文山, 张璐. 环氧导电胶的反应动力学及其应用[J]. 材料导报, 2023, 37(8): 22020025-6.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed