Please wait a minute...
材料导报  2025, Vol. 39 Issue (12): 24050056-7    https://doi.org/10.11896/cldb.24050056
  无机非金属及其复合材料 |
基于铋氧族化合物/碳纳米管复合物的柔性微型超级电容器
陈龙, 陈振宇, 曾旭, 吴雨龙, 郭雅妮, 孙义民*
武汉工程大学材料科学与工程学院,等离子体化学与新材料湖北省重点实验室,武汉 430205
Flexible Micro-supercapacitor Based on Bismuth Chalcogenides/Carbon Nanotubes Composite
CHEN Long, CHEN Zhenyu, ZENG Xu, WU Yulong, GUO Yani, SUN Yimin*
Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
下载:  全 文 ( PDF ) ( 15978KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以Bi(NO3)3·5H2O为原料,以羧基化碳纳米管为载体,通过水热分解在碳纳米管上生长Bi2O3晶体,进而使用硫代乙酰胺(TAA)和硒粉作为硫源和硒源制备Bi2S3和Bi2Se3晶体,得到了铋的氧族化合物与碳纳米管的复合物(Bi2X3/CNT,X=O,S,Se)。利用3D打印技术制备叉指状硅橡胶基底,以Bi2X3/CNT为活性材料组装柔性芯片式微型超级电容器。研究表明,Bi2O3@CNT、Bi2S3@CNT和Bi2Se3@CNT在2 mA/cm2的电流密度下面积比电容分别达805.5 mF/cm2、1 232.5 mF/cm2和1 556.8 mF/cm2,10 000次循环伏安测试后电容保持率分别为83.2%、80.9%和90.0%。将三个微型电容器串联可使输出电压扩充至3倍,将三个微型电容并联则可在电位窗口不变的情况下获得3倍的容量,展现出优秀的可扩展性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈龙
陈振宇
曾旭
吴雨龙
郭雅妮
孙义民
关键词:  铋的氧族化合物  碳纳米管  叉指状电极  柔性微型电容器    
Abstract: Bi2O3 nanocrystals were grown on carbon nanotubes through hydrothermal decomposition method with Bi(NO3)3-5H2O as raw material and carboxylated carbon nanotubes as substrate, and then Bi2S3 and Bi2Se3 crystals were prepared using thioacetamide (TAA) and selenium powder as sulfur and selenium sources to produce bismuth chalcogenides/carbon nanotubes composite (Bi2X3/CNT, X=O, S, Se). By using 3D printing technique, interdigital electrode pattern substrate was fabricated from silicone rubber, and flexible on-chip micro-supercapacitors were assembled with Bi2X3/CNT as electroactive materials. The results indicated that the areal capacitances of Bi2O3@CNT, Bi2S3@CNT and Bi2Se3@CNT reached 805.5 mF/cm2, 1 232.5 mF/cm2 and 1 556.8 mF/cm2 at a current density of 2 mA/cm2, respectively, and the capacitances maintained 83.2%, 80.9% and 90.0% after 10 000 cyclic voltammetry tests. The output voltage could be expanded up to 3 folds by connecting three miniature capacitors in series, and the capacitance showed 3 folds increase when connecting three supercapacitors in parallel, which exhibited excellent expandability.
Key words:  bismuth chalcogenides    carbon nanotube    interdigital electrode    flexible micro-supercapacitor
出版日期:  2025-06-25      发布日期:  2025-06-19
ZTFLH:  TM53  
基金资助: 湖北省重点研发计划项目(2022BAD009);国家自然科学基金青年项目(51504168);武汉工程大学第15届研究生教育创新基金(CX2023067)
通讯作者:  *孙义民,武汉工程大学材料科学与工程学院副教授,研究方向为新型纳米材料在能量存储与转换以及电化学传感器方面的应用。ymsun@wit.edu.cn   
作者简介:  陈龙,武汉工程大学硕士研究生,研究方向为新型储能材料和柔性储能器件。
引用本文:    
陈龙, 陈振宇, 曾旭, 吴雨龙, 郭雅妮, 孙义民. 基于铋氧族化合物/碳纳米管复合物的柔性微型超级电容器[J]. 材料导报, 2025, 39(12): 24050056-7.
CHEN Long, CHEN Zhenyu, ZENG Xu, WU Yulong, GUO Yani, SUN Yimin. Flexible Micro-supercapacitor Based on Bismuth Chalcogenides/Carbon Nanotubes Composite. Materials Reports, 2025, 39(12): 24050056-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050056  或          https://www.mater-rep.com/CN/Y2025/V39/I12/24050056
1 Wang R C, Luo S H, Xiao C C, et al. Electrochimica Acta, 2021, 386, 138420.
2 Sun Y M, Yi R H, Duan J Q, et al. Materials Reports, 2021, 35(16), 16001 (in Chinese).
孙义民, 易荣华, 段纪青, 等. 材料导报, 2021, 35(16), 16001.
3 Xavier F F S, Bruziquesi C G O, Fagundes W S, et al. Journal of the Brazilian Chemical Society, 2019, 30(4), 727.
4 Qu D, Qu D, Wang L, et al. Journal of Power Sources, 2014, 269, 129.
5 Wang Y, Zhang Y, Wang G, et al. Advanced Functional Materials, 2020, 30(16), 1907284.
6 Zhao Z, Wang S, Wan F, et al. Advanced Functional Materials, 2021, 31(23), 2101302.
7 Wang R C, Chen Z Y, Li H S, et al. Journal of Wuhan University of Technology, 2021, 43(3), 288 (in Chinese).
王若冲, 陈振宇, 李厚燊, 等. 武汉工程大学学报, 2021, 43(3), 288.
8 Zhang Y, Wang Y, Ganesh A, et al. Advanced Engineering Materials, 2021, 23(7), 2100357.
9 Wang Y, Zhang Y, Liu J, et al. Energy Storage Materials, 2020, 30, 412.
10 Yi R H, Wang R C, Duan J Q, et al. Electrochimica Acta, 2020, 338, 135845.
11 Pandit B, Sharma G K, Sankapal B R. Journal of Colloid and Interface Science, 2017, 505, 1011.
12 Liang W, Chen B, Lin W, et al. Materials Letters, 2023, 332, 133542.
13 Civelekoglu-Odabas M, Becerik I. Current Nanoscience, 2019, 15(6), 654.
14 Liu R, Ma L, Niu G, et al. Advanced Functional Materials, 2017, 27(29), 1.
15 Li L, Zhang X, Zhang Z, et al. Journal of Materials Chemistry A, 2016, 4, 16635.
16 Zheng H, Zeng Y, Zhang H, et al. Journal of Power Sources, 2019, 433, 126684.
17 Zong W, Lai F, He G, et al. Small, 2018, 14, 1.
18 Prabhakar Vattikuti S V, Police A K R, Shim J, et al. Scientific Reports, 2018, 8, 1.
19 Chen M, Zhang Y, Liu Y, et al. Applied Surface Science, 2019, 492, 746.
20 Moyseowicz A. Journal of Solid State Electrochemistry, 2019, 23(4), 1191.
21 Liu K L, Chen F, Liu Y, et al. CrystEngComm, 2017, 19(3), 570.
22 Pandit B, Pande S A, Sankapal B R. Chinese Journal of Chemistry, 2019, 37(12), 1279.
23 Raut S S, Dhobale J A, Sankapal B R. Physica E:Low-Dimensional Systems and Nanostructures, 2017, 87, 209.
24 Shinde N M, Xia Q X, Yun J M, et al. Electrochimica Acta, 2019, 296, 308.
25 Wang J, Zhou C, Yan X, et al. Journal of Materials Science:Materials in Electronics, 2019, 30(7), 6633.
[1] 武金帆, 徐芬, 孙立贤, 廖鹿敏, 管彦洵. 具有抗氧化性的Al-Bi(C2H5OH)3-C多孔块体制氢材料[J]. 材料导报, 2025, 39(8): 24030133-6.
[2] 苗青山, 杨璟, 张铁成, 李文鹏, 陕绍云, 苏红莹. 磁性多壁碳纳米管的制备及用于类芬顿反应催化降解橙黄Ⅱ[J]. 材料导报, 2024, 38(9): 22120166-7.
[3] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[4] 程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
[5] 王加悦, 周涵. 微波法制备碳纳米材料的机理及进展[J]. 材料导报, 2024, 38(3): 22110109-6.
[6] 毛鹏燕, 赵晖, 李宏达, 邰凯平. 碳纳米管-铜复合薄膜材料的抗辐照损伤性能研究[J]. 材料导报, 2024, 38(19): 22120135-6.
[7] 张永芳, 文镜茜, 董丽虹, 王海斗, 郭伟玲, 黄艳斐. 基于碳纳米管及其复合材料的柔性应变传感器研究进展[J]. 材料导报, 2024, 38(14): 23050046-11.
[8] 李少杰, 张云峰, 张玉令, 闫军, 杜仕国, 陈博. 纳米改性超高性能混凝土板在爆炸荷载下的动态响应试验研究[J]. 材料导报, 2024, 38(11): 22110130-9.
[9] 刘金涛, 崔娇伟, 周煜, 钱如胜, 孔德玉. 三维石墨烯-碳纳米管对超高性能混凝土机敏性能的影响[J]. 材料导报, 2024, 38(11): 23010135-8.
[10] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[11] 栾利强, 文双寿, 余和德, 任俊颖. 碳纳米管改性沥青混合料低温裂缝扩展分析[J]. 材料导报, 2023, 37(20): 22030145-7.
[12] 陈点, 吕仕铭, 汪羽翎. 非共价键化学修饰碳纳米管的分散及其机理[J]. 材料导报, 2023, 37(17): 22040300-18.
[13] 夏伟, 陆松, 白二雷, 许金余, 杜宇航, 姚廒. 碳纳米管-碳纤维复合改性混凝土力学性能研究[J]. 材料导报, 2023, 37(16): 22010125-9.
[14] 朱建平, 张素娟, 高飞, 张文艳. CNTs@SiO2核壳结构纳米线对水泥力学性能及微观结构的影响[J]. 材料导报, 2023, 37(16): 22010225-6.
[15] 刘忠柱, 赵伟, 潘玮, 李睢水, 郑国强, 李倩. 多壁碳纳米管改性等规聚丙烯复合材料的结构及性能研究[J]. 材料导报, 2023, 37(1): 20100004-6.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed