Please wait a minute...
材料导报  2025, Vol. 39 Issue (12): 24050074-9    https://doi.org/10.11896/cldb.24050074
  金属与金属基复合材料 |
表面渗碳高强轴承钢滚动接触疲劳行为研究
杨红兵1,2, 邵子恒2, 颜莹1, 谷金波3, 迟宏宵3, 王斌2,*, 张鹏2, 张哲峰2
1 东北大学材料科学与工程学院,沈阳 110819
2 中国科学院金属研究所沈阳材料科学国家研究中心,沈阳 110016
3 钢铁研究总院有限公司,北京 100081
Study on the Rolling Contact Fatigue Behaviors of Surface Carburized High-strength Bearing Steel
YANG Hongbing1,2, SHAO Ziheng2, YAN Ying1, GU Jinbo3, CHI Hongxiao3, WANG Bin2,*, ZHANG Peng2, ZHANG Zhefeng2
1 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 Iron and Steel Research Institute Co., Ltd., Beijing 100081, China
下载:  全 文 ( PDF ) ( 65584KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,为追求更优异的滚动接触疲劳性能,表面渗碳技术已被广泛应用于轴承钢的制备过程中。本工作对一种高强不锈轴承钢进行两种不同工艺时长的渗碳处理,研究渗碳处理高强轴承钢的微观组织、显微硬度、残余应力及滚动接触疲劳行为。结果表明:两种工艺渗碳处理获得的碳化物类型、尺寸、形状、含量以及残余应力梯度均十分相近;较长时间渗碳处理获得的残余奥氏体在尺寸和含量上均明显大于较短时间渗碳处理的情况,两种工艺渗碳处理高强轴承钢在滚动接触疲劳过程中都会在亚表面最大切应力位置附近形成亮蚀区(Light etched region,LER);疲劳裂纹萌生于亮蚀区内,并向表面扩展,最终形成深度与最大切应力到表面距离相近的剥落坑。渗碳处理时间较长的高强轴承钢具有较高的滚动接触疲劳寿命,这是因为其渗层中具有相对规模较大的残余奥氏体;残余奥氏体会使裂纹尖端钝化与闭合,进而延缓疲劳裂纹扩展,提升疲劳裂纹扩展寿命。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨红兵
邵子恒
颜莹
谷金波
迟宏宵
王斌
张鹏
张哲峰
关键词:  高强轴承钢  渗碳处理  残余奥氏体  滚动接触疲劳寿命    
Abstract: In recent years, surface carburizing technology has been widely used in the preparation process of bearing steel to get better rolling contact fatigue performance. In this work, the microstructure, microhardness, residual stress and rolling contact fatigue behaviors of high-strength stainless bearing steel treated by carburizing with two different process durations were studied. The results show that, the type, size, shape and content of carbides and the residual stress gradient obtained by the two carburizing treatments are very similar. The size and content of residual austenite obtained by the carburizing treatment for a longer time is significantly larger than those obtained by the carburizing treatment for a shorter time. The high-strength bearing steel treated with carburizing by the two processes would form a light etched region(LER) near the position of the maximum shear stress on the subsurface during the rolling contact fatigue process. The fatigue cracks originate in the light etched region, and then expand to the surface, finally form a spalling pit with a depth similar to the distance from the maximum shear stress to the surface. The high-strength bearing steel with a longer carburizing treatment time has a higher rolling contact fatigue life because of the relatively large residual austenite in the carburizing layer. The residual austenite can passivate and close the crack tip, thereby delaying the fatigue crack propagation and improving the fatigue crack propagation life.
Key words:  high-strength bearing steel    carburizing    residual austenite    rolling contact fatigue life
出版日期:  2025-06-25      发布日期:  2025-06-19
ZTFLH:  TG142.1  
基金资助: 国家科技重大专项(J2019-Ⅵ-0019-0134)
通讯作者:  *王斌,博士,中国科学院金属研究所副研究员、硕士研究生导师。目前主要研究方向为金属材料和构件疲劳性能优化及可靠性评价。bwang12s@imr.ac.cn   
作者简介:  杨红兵,东北大学材料科学与工程学院硕士研究生。目前主要研究领域为金属材料的组织与性能。
引用本文:    
杨红兵, 邵子恒, 颜莹, 谷金波, 迟宏宵, 王斌, 张鹏, 张哲峰. 表面渗碳高强轴承钢滚动接触疲劳行为研究[J]. 材料导报, 2025, 39(12): 24050074-9.
YANG Hongbing, SHAO Ziheng, YAN Ying, GU Jinbo, CHI Hongxiao, WANG Bin, ZHANG Peng, ZHANG Zhefeng. Study on the Rolling Contact Fatigue Behaviors of Surface Carburized High-strength Bearing Steel. Materials Reports, 2025, 39(12): 24050074-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050074  或          https://www.mater-rep.com/CN/Y2025/V39/I12/24050074
1 Xia Z, Wu D, Zhang X, et al. International Journal of Fatigue, 2024, 179, 108042.
2 Yu F, Chen X P, Xu H F, et al. Acta Metallurgica Sinica, 2020, 56(4), 513(in Chinese).
俞峰, 陈兴品, 徐海峰, 等. 金属学报, 2020, 56(4), 513.
3 Chang Z, Jia Q, Yuan X, et al. Tribology International, 2017, 112, 68.
4 Vieillard C. International Journal of Fatigue, 2017, 96, 283.
5 Zheng K, Cao W Q, Yu F, et al. Iron and Steel, 2022, 57(7), 125(in Chinese).
郑凯, 曹文全, 俞峰, 等. 钢铁, 2022, 57(7), 125.
6 Yang C Y, Xu J H, Fu Y C, et al. Transactions of Nanjing University of Aeronautics and Astronautics, 2016, 33(6), 706.
7 Paladugu M, Hyde R S. Wear, 2018, 406, 84.
8 Choi Y. International Journal of Fatigue, 2009, 31(10), 1517.
9 Wang G, Qu S, He R, et al. Transactions of Nonferrous Metals Society of China, 2016, 26(12), 3161.
10 Tian Y, Song C W, Ge Q J, et al. Steel Rolling, 2019, 36(6), 1(in Chinese).
田勇, 宋超伟, 葛泉江, 等. 轧钢, 2019, 36(6), 1.
11 Yuan X H. Multi-scale strengthening-toughening mechanisms and fatigue resistance of high-alloy Cr-Co-Mo bearing steel. Ph. D. Thesis, Kunming University of Science and Technology, China, 2016(in Chinese).
袁晓虹. 高Cr-Co-Mo轴承钢强韧机制及抗疲劳特性的多尺度研究. 博士学位论文, 昆明理工大学, 2016.
12 Liu B, Yu M. Bearing, 2020(11), 65(in Chinese).
刘波, 于明. 轴承, 2020(11), 65.
13 Reséndiz-Calderon C D, Rodríguez-Castro G A, Meneses-Amador A, et al. Journal of Materials Engineering and Performance, 2017, 26, 5599.
14 Wang J G, Feng Z, Zhou J C. Materials Engineering, 1989(6), 35(in Chinese).
王介淦, 冯正, 周建初. 材料工程, 1989(6), 35.
15 Yang Z N, Ji Y L, Zhang F C, et al. Materials Science and Engineering:A, 2018, 725, 98.
16 Wu Z W, Yang M S, Zhao K Y. Surface Technology, 2021, 50(7), 283(in Chinese).
吴志伟, 杨卯生, 赵昆渝. 表面技术, 2021, 50(7), 283.
17 Wang D Y. Study on rolling contact fatigue and wear characteristics of GCr15 bearing steel. Master’s Thesis, University of Jinan, China, 2022(in Chinese).
王东跃. GCr15轴承钢的滚动接触疲劳及磨损特性研究. 硕士学位论文, 济南大学, 2022
18 Li X. Study on the contact fatigue properties of RV reducer crankshaft considering residual stress and inclusions. Master’s Thesis, Central South University, China, 2022(in Chinese).
李鑫. 考虑残余应力和夹杂物的RV减速器曲轴接触疲劳性能研究. 硕士学位论文, 中南大学, 2022.
19 Bhadeshia H K D H. ISIJ International, 2002, 42(9), 1059.
20 Mayer H R, Stanzl-Tschegg S E, Sawaki Y, et al. Fatigue & Fracture of Engineering Materials & Structures, 1995, 18(9), 935.
21 Rogl G, Grytsiv A, Rogl P, et al. Acta Materialia, 2014, 76, 434.
22 Jiang G H, Li S X, Pu J B, et al. China Surface Engineering, 2022, 35(2), 12(in Chinese).
蒋港辉, 李淑欣, 蒲吉斌, 等. 中国表面工程, 2022, 35(2), 12.
23 Cao Z, Liu T, Yu F, et al. International Journal of Fatigue, 2020, 131, 105351.
24 Kanetani K, Mikami T, Ushioda K. ISIJ International, 2020, 60(8), 1774.
25 Cheng X, Gui X L, Gao G H. Materials Reports, 2023, 37(7), 120(in Chinese).
程瑄, 桂晓露, 高古辉. 材料导报, 2023, 37(7), 120.
26 Huang S, Zhang G Q, Wang M Q, et al. Journal of Iron and Steel Research, 2012, 24(4), 34(in Chinese).
黄帅, 张国强, 王毛球, 等. 钢铁研究学报, 2012, 24(4), 34.
27 Wang W, Liu H, Zhu C, et al. International Journal of Mechanical Sciences, 2019, 151, 263.
28 Creţu S S, Popinceanu N G. Wear, 1985, 105(2), 153.
29 Becker P C. Metals Technology, 1981, 8(1), 234.
30 Zhao P, Hadfield M, Wang Y, et al. Wear, 2006, 261(3-4), 390.
31 Bhattacharyya A, Subhash G, Arakere N. International journal of Fatigue, 2014, 59, 102. .
32 Fourel L, Noyel J P, Bossy E, et al. Tribology International, 2021, 164, 107224.
33 Yang W, Yao Q, Yu J, et al. International Journal of Rotating Machinery, 2023, 2023(1), 7622545.
34 Lu X, Zhou L, Lei C, et al. Journal of Materials Research and Technology, 2023, 24, 8955.
35 Shao Z, Zhu Y, Zhang P, et al. International Journal of Fatigue, 2024, 179, 108054.
36 Warhadpande A, Sadeghi F, Evans R D, et al. Tribology Transactions, 2012, 55(4), 422.
37 Moghaddam S M, Sadeghi F. Tribology Transactions, 2016, 59(6), 1142.
38 Ravi G, De Waele W, Nikolic K, et al. Tribology International, 2023, 180, 108290.
39 Shen Y, Moghadam S M, Sadeghi F, et al. International Journal of Fatigue, 2015, 75, 135.
40 Qian K. Hot Working Technology, 2010, 39(10), 60(in Chinese).
钱坤. 热加工工艺, 2010, 39(10), 60.
[1] 张鹏, 李兵, 徐飞越, 汪锐杰, 王敏. 预处理条件对QP980钢组织及塑性失稳行为的影响[J]. 材料导报, 2025, 39(8): 24020130-6.
[2] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[3] 邓杰, 孙新军, 张涛, 宋新莉, 梁小凯, 马玉喜, 向志东. 冷却速率对中锰马氏体耐磨钢微观结构及硬度的影响[J]. 材料导报, 2020, 34(10): 10126-10131.
[4] 刘倩, 郑小平, 张荣华, 田亚强, 陈连生. 新型汽车用高强度中锰钢研究现状及发展趋势[J]. 材料导报, 2019, 33(7): 1215-1220.
[5] 李建, 贾涓, 宋新莉, 孙新军, 范丽霞, 马玉喜, 梁小凯. 一步配分工艺对低合金耐磨钢组织性能的影响[J]. 材料导报, 2019, 33(18): 3113-3118.
[6] 田亚强, 黎旺, 郑小平, 宋进英, 魏英立, 陈连生. 两相区退火热轧中锰钢碳化物析出行为与组织性能研究[J]. 材料导报, 2019, 33(16): 2765-2770.
[7] 李辉, 陈家泳, 段晓鸽, 江海涛. 中锰Q&P钢残余奥氏体的稳定性及其TRIP效应[J]. 《材料导报》期刊社, 2018, 32(4): 611-615.
[8] 陈连生, 曹鸿梓, 田亚强, 宋进英, 魏英立, 郑小平. 前驱体对含Cu低碳钢I&Q&P处理后组织性能的影响[J]. 《材料导报》期刊社, 2017, 31(6): 105-109.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed