Abstract: Shape memory polymers (SMPs) can rapidly revert to a predetermined state upon stimulation from external factors (temperature, electric current and magnetic field), which found extensive applications in biomedicine, smart textiles, sensors and various other fields. Recently, the research on bio-based shape memory polymers has gained significant attention due to the global energy crisis and worsening environmental issues. A low viscosity bio-based epoxy oligomer (P-ME-EP-n) with a shear viscosity 0.12 Pa·s at 25 ℃ and an average polymerization degree about 0.86 was synthesized from biomass compound magnolol and glycol diglycidyl ether. It was found that the impact strength of P-ME-EP-n/DDM (5.6 kJ/m2) prepared using DDM (4, 4’-diaminodiphenylmethane) as curing agent was 56% higher than that of cured E51/DDM (3.6 kJ/m2). P-ME-EP-n/DDM’s relaxation time at 100 ℃ (Tg of 49 ℃) is 14 s, where most of the reported shape memory epoxy resins rela-xation time at Tg+ 50 ℃ ranged within ten to thousands of seconds. The shape fixation rate (Rf) and shape recovery rate (Rr) measured for four shape memory cycles were all greater than 99.0% and 98.8%, respectively. Additionally, the samples of humanoid and floriform prepared in this research vividly showed shape memory phenomena such as “bending” and “flowering”. These results manifest that P-ME-EP-n/DDM is both environmentally friendly and has excellent shape memory performance. The research work in this paper provides a new idea for the design and development of bio-based shape memory polymers.
1 Tuo Z W, Chen K Z, Zhou Y, et al. Chemical Engineering Journal, 2023, 457, 110510. 2 Luo L, Zhang F H, Liu Y J, et al. Chemical Engineering Journal, 2023, 457, 141282. 3 Luo F X, Wei Y Q, Wu N, et al. Aerospace Materials Technology, 2023, 53(3), 60 (in Chinese). 罗发祥, 魏要强, 武南, 等. 宇航材料工艺, 2023, 53(3), 60. 4 Liu X H, Liang L Y, Lu M P, et al. Polymer, 2020, 210, 123030. 5 Zhang Y J, Yuan L, Liang G Z, et al. ACS Sustainable Chemistry & Engineering, 2023, 11(24), 9264. 6 Denissen W, Winne J M, Du Prez F E. Chemical Science, 2016, 7(1), 30. 7 Yu Z D, Zhou D W, Li G, et al. Chemical Research and Applications, 2019, 31(5), 854 (in Chinese). 于昭东, 周德文, 李敢, 等. 化学研究与应用, 2019, 31(5), 854. 8 Tan X C, Zou Q, Huang Y Z, et al. Industrial & Engineering Chemistry Research, 2018, 57(23), 7898. 9 Yang J, Tao L M, Cao P R, et al. Macromolecular Materials and Engineering, 2021, 306(8), 202100185. 10 Zhou T, Zhang X, Bu M, et al. European Polymer Journal, 2023, 197, 112326. 11 Fache M, Viola A, Auvergne R, et al. European Polymer Journal, 2015, 68, 526. 12 Yang J W, Cho H J, Gong Y D. Progress in Organic Coatings, 2023, 175, 107357. 13 Gao T L, Fu G, Wang X J, et al. Journal of Harbin Institute of Technology, 2021, 53(2), 162 (in Chinese). 高堂铃, 付刚, 王先杰, 等. 哈尔滨工业大学学报, 2021, 53(2), 162. 14 Yu Y J, Yang X, Liu Q F, et al. Polymers for Advanced Technologies, 2022, 33(9), 2908. 15 Zhang Y Q, Zhang FF, Wang J Y, et al. Polymer Materials Science and Engineering, 2021, 37(11), 77 (in Chinese). 张雨晴, 张锋锋, 王锦艳, 等. 高分子材料科学与工程, 2021, 37(11), 77. 16 Kissinger H E. Analytical Chemistry, 1957, 29(11), 1702. 17 Lu Y F, Wang Y M, Chen S F, et al. Progress in Organic Coatings, 2020, 139, 105436. 18 Yang X X, Guo L Z, Xu X, et al. Materials & Design, 2020, 186, 108248. 19 Li Z H, Yang Y, Ma L, et al. Polymer Bulletin, 2023, 80(2), 1641. 20 Wang S, Ma S Q, Li Q, et al. Macromolecules, 2018, 51(20), 8001. 21 Li W B, Chang Q Y, Xiao L H, et al. Acs Applied Polymer Materials, 2023, 5(6), 4498. 22 Liu X H, Song X, Chen B F, et al. Reactive & Functional Polymers, 2022, 170, 105121. 23 Xu W M, Pan Y, Deng J N, et al. Macromolecular Chemistry and Physics, 2021, 222(23), 2100290. 24 Zhang J H, Gong Z J, Wu C, et al. Green Chemistry, 2022, 24(18), 6900. 25 Hu J Y, Feng H Y, Rong Y K, et al. Polymers for Advanced Technologies, 2023, 34(5), 1599. 26 Zhong L Y, Hao Y X, Zhang J H, et al. Macromolecules, 2022, 55(2), 595. 27 Liu J M, Liu X H, Cui X H, et al. ACS Applied Polymer Materials, 2023, 5(12), 10042. 28 Kim W B, Kim Y M, Song S H, et al. Heliyon, 2023, 9(6), e16945. 29 Qin J J, Liu X H, Chen B F, et al. Reactive & Functional Polymers, 2022, 180, 105411. 30 Zhao S Z, Yang H K, Wang D, et al. Soft Matter, 2022, 18(2), 382. 31 Xu Y Z, Fu P, Dai S L, et al. Industrial Crops and Products, 2021, 171, 113978. 32 Dai S Y, Mao L C, Ning H J, et al. ACS Applied Materials & Interfaces, 2024, 16(7), 9275. 33 Wang J J, Hong L Q, Jiao P C. Materials & Design, 2023, 226, 111648. 34 Sangermano M, Bergoglio M, Schögl S. Macromolecular Materials and Engineering, 2024, 309, 2300371. 35 Zhang W Z, Zou C L, Pan Q Z, et al. Advanced Functional Materials, 2024, 34(33), 2400245. 36 Chen X L, Zhang N D, Ni C J, et al. Chemical Engineering Journal, 2024, 484, 149394. 37 Yang J, Cao P R, Gao K T, et al. Coatings, 2023, 13(1), 166.