Please wait a minute...
材料导报  2025, Vol. 39 Issue (11): 24020002-7    https://doi.org/10.11896/cldb.24020002
  高分子与聚合物基复合材料 |
厚朴酚基形状记忆环氧树脂的制备及性能研究
周涛, 张笑晴*, 陈家荣, 杨晨艺, 雷彩红
广东工业大学材料与能源学院,广州 510006
Preparation and Properties of Magnolol-based Shape Memory Epoxy Resin
ZHOU Tao, ZHANG Xiaoqing*, CHEN Jiarong, YANG Chenyi, LEI Caihong
School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
下载:  全 文 ( PDF ) ( 12194KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 形状记忆聚合物(SMPs)在温度、电流、磁场等外部环境刺激下可迅速回复到预定状态,被广泛应用于生物医药、智能纺织品、传感器等领域。由于全球能源危机和日益恶化的环境问题,生物基形状记忆聚合物的研究也逐渐成为近年来的研究热点。本工作以生物质化合物厚朴酚与乙二醇二缩水甘油醚为原料,合成了一种低黏度的生物基环氧低聚物P-ME-EP-n(25 ℃下剪切黏度为0.12 Pa·s,平均聚合度约为0.86)。研究发现,与E51/DDM固化树脂(3.6 kJ/m2)相比,经固化剂DDM(4,4′-二氨基二苯基甲烷)固化得到的P-ME-EP-n/DDM(5.6 kJ/m2)的冲击强度提高了56%;P-ME-EP-n/DDM(玻璃化转变温度Tg为49 ℃)在100 ℃下的弛豫时间为14 s,而大多数报道的形状记忆环氧树脂在Tg+50 ℃下的弛豫时间在十到数千秒不等;该树脂四次形状记忆循环的形状固定率(Rf)均大于99.0%,形状恢复率(Rr)均大于98.8%。此外,P-ME-EP-n/DDM的小人和花朵形状样品能形象生动地呈现“弯腰”和“开花”等形状记忆现象。以上结果表明P-ME-EP-n/DDM兼具绿色环保和优秀形状记忆性能。本工作为生物基形状记忆聚合物的设计和开发提供了新的思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周涛
张笑晴
陈家荣
杨晨艺
雷彩红
关键词:  生物基联苯环氧树脂  形状记忆聚合物  低黏度  应力松弛    
Abstract: Shape memory polymers (SMPs) can rapidly revert to a predetermined state upon stimulation from external factors (temperature, electric current and magnetic field), which found extensive applications in biomedicine, smart textiles, sensors and various other fields. Recently, the research on bio-based shape memory polymers has gained significant attention due to the global energy crisis and worsening environmental issues. A low viscosity bio-based epoxy oligomer (P-ME-EP-n) with a shear viscosity 0.12 Pa·s at 25 ℃ and an average polymerization degree about 0.86 was synthesized from biomass compound magnolol and glycol diglycidyl ether. It was found that the impact strength of P-ME-EP-n/DDM (5.6 kJ/m2) prepared using DDM (4, 4’-diaminodiphenylmethane) as curing agent was 56% higher than that of cured E51/DDM (3.6 kJ/m2). P-ME-EP-n/DDM’s relaxation time at 100 ℃ (Tg of 49 ℃) is 14 s, where most of the reported shape memory epoxy resins rela-xation time at Tg+ 50 ℃ ranged within ten to thousands of seconds. The shape fixation rate (Rf) and shape recovery rate (Rr) measured for four shape memory cycles were all greater than 99.0% and 98.8%, respectively. Additionally, the samples of humanoid and floriform prepared in this research vividly showed shape memory phenomena such as “bending” and “flowering”. These results manifest that P-ME-EP-n/DDM is both environmentally friendly and has excellent shape memory performance. The research work in this paper provides a new idea for the design and development of bio-based shape memory polymers.
Key words:  bio-based biphenyl epoxy resin    shape memory polymer    low viscosity    stress relaxation
出版日期:  2025-06-10      发布日期:  2025-05-29
ZTFLH:  TQ323  
基金资助: 国家自然科学基金(52073065)
通讯作者:  *张笑晴,广东工业大学大学材料与能源学院副教授、硕士研究生导师。目前主要从事生物基高性能材料的设计、合成及应用研究;纳米碳或纤维材料表、界面设计及复合材料制备等方面的研究工作。zhangxq@gdut.edu.cn   
作者简介:  周涛,2021年6月于湖南文理学院获得工学学士学位,现为广东工业大学材料与能源学院硕士研究生,在张笑晴副教授的指导下进行研究,主要研究领域为环氧树脂的结构改性、阻燃及增韧。
引用本文:    
周涛, 张笑晴, 陈家荣, 杨晨艺, 雷彩红. 厚朴酚基形状记忆环氧树脂的制备及性能研究[J]. 材料导报, 2025, 39(11): 24020002-7.
ZHOU Tao, ZHANG Xiaoqing, CHEN Jiarong, YANG Chenyi, LEI Caihong. Preparation and Properties of Magnolol-based Shape Memory Epoxy Resin. Materials Reports, 2025, 39(11): 24020002-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24020002  或          https://www.mater-rep.com/CN/Y2025/V39/I11/24020002
1 Tuo Z W, Chen K Z, Zhou Y, et al. Chemical Engineering Journal, 2023, 457, 110510.
2 Luo L, Zhang F H, Liu Y J, et al. Chemical Engineering Journal, 2023, 457, 141282.
3 Luo F X, Wei Y Q, Wu N, et al. Aerospace Materials Technology, 2023, 53(3), 60 (in Chinese).
罗发祥, 魏要强, 武南, 等. 宇航材料工艺, 2023, 53(3), 60.
4 Liu X H, Liang L Y, Lu M P, et al. Polymer, 2020, 210, 123030.
5 Zhang Y J, Yuan L, Liang G Z, et al. ACS Sustainable Chemistry & Engineering, 2023, 11(24), 9264.
6 Denissen W, Winne J M, Du Prez F E. Chemical Science, 2016, 7(1), 30.
7 Yu Z D, Zhou D W, Li G, et al. Chemical Research and Applications, 2019, 31(5), 854 (in Chinese).
于昭东, 周德文, 李敢, 等. 化学研究与应用, 2019, 31(5), 854.
8 Tan X C, Zou Q, Huang Y Z, et al. Industrial & Engineering Chemistry Research, 2018, 57(23), 7898.
9 Yang J, Tao L M, Cao P R, et al. Macromolecular Materials and Engineering, 2021, 306(8), 202100185.
10 Zhou T, Zhang X, Bu M, et al. European Polymer Journal, 2023, 197, 112326.
11 Fache M, Viola A, Auvergne R, et al. European Polymer Journal, 2015, 68, 526.
12 Yang J W, Cho H J, Gong Y D. Progress in Organic Coatings, 2023, 175, 107357.
13 Gao T L, Fu G, Wang X J, et al. Journal of Harbin Institute of Technology, 2021, 53(2), 162 (in Chinese).
高堂铃, 付刚, 王先杰, 等. 哈尔滨工业大学学报, 2021, 53(2), 162.
14 Yu Y J, Yang X, Liu Q F, et al. Polymers for Advanced Technologies, 2022, 33(9), 2908.
15 Zhang Y Q, Zhang FF, Wang J Y, et al. Polymer Materials Science and Engineering, 2021, 37(11), 77 (in Chinese).
张雨晴, 张锋锋, 王锦艳, 等. 高分子材料科学与工程, 2021, 37(11), 77.
16 Kissinger H E. Analytical Chemistry, 1957, 29(11), 1702.
17 Lu Y F, Wang Y M, Chen S F, et al. Progress in Organic Coatings, 2020, 139, 105436.
18 Yang X X, Guo L Z, Xu X, et al. Materials & Design, 2020, 186, 108248.
19 Li Z H, Yang Y, Ma L, et al. Polymer Bulletin, 2023, 80(2), 1641.
20 Wang S, Ma S Q, Li Q, et al. Macromolecules, 2018, 51(20), 8001.
21 Li W B, Chang Q Y, Xiao L H, et al. Acs Applied Polymer Materials, 2023, 5(6), 4498.
22 Liu X H, Song X, Chen B F, et al. Reactive & Functional Polymers, 2022, 170, 105121.
23 Xu W M, Pan Y, Deng J N, et al. Macromolecular Chemistry and Physics, 2021, 222(23), 2100290.
24 Zhang J H, Gong Z J, Wu C, et al. Green Chemistry, 2022, 24(18), 6900.
25 Hu J Y, Feng H Y, Rong Y K, et al. Polymers for Advanced Technologies, 2023, 34(5), 1599.
26 Zhong L Y, Hao Y X, Zhang J H, et al. Macromolecules, 2022, 55(2), 595.
27 Liu J M, Liu X H, Cui X H, et al. ACS Applied Polymer Materials, 2023, 5(12), 10042.
28 Kim W B, Kim Y M, Song S H, et al. Heliyon, 2023, 9(6), e16945.
29 Qin J J, Liu X H, Chen B F, et al. Reactive & Functional Polymers, 2022, 180, 105411.
30 Zhao S Z, Yang H K, Wang D, et al. Soft Matter, 2022, 18(2), 382.
31 Xu Y Z, Fu P, Dai S L, et al. Industrial Crops and Products, 2021, 171, 113978.
32 Dai S Y, Mao L C, Ning H J, et al. ACS Applied Materials & Interfaces, 2024, 16(7), 9275.
33 Wang J J, Hong L Q, Jiao P C. Materials & Design, 2023, 226, 111648.
34 Sangermano M, Bergoglio M, Schögl S. Macromolecular Materials and Engineering, 2024, 309, 2300371.
35 Zhang W Z, Zou C L, Pan Q Z, et al. Advanced Functional Materials, 2024, 34(33), 2400245.
36 Chen X L, Zhang N D, Ni C J, et al. Chemical Engineering Journal, 2024, 484, 149394.
37 Yang J, Cao P R, Gao K T, et al. Coatings, 2023, 13(1), 166.
[1] 吴护林, 李忠盛, 金应荣, 贺毅. 弹簧应力松弛反常载荷损失及原因分析[J]. 材料导报, 2023, 37(23): 22090089-6.
[2] 李兴建, 侯晴, 杨继龙, 范宇飞, 崔秋月, 徐守芳. 电刺激响应形状记忆聚合物复合材料的设计和驱动性能[J]. 材料导报, 2022, 36(6): 20070243-12.
[3] 刘均澔, 李文兵, 龚韬, 魏婉婷, 钱坤. 形状记忆微/纳米图案的设计、应用和发展[J]. 材料导报, 2022, 36(23): 20100218-10.
[4] 王冕, 张全超, 敖海勇, 万怡灶. 形状记忆聚合物表面响应性润湿性研究进展[J]. 材料导报, 2022, 36(21): 20090319-9.
[5] 张芳芳, 周蕊, 孙毅刚, 刘兵飞, 杜春志, 洪彬. 基于细观相变和黏弹性本构模型的SMP热力循环数值模拟对比分析[J]. 材料导报, 2022, 36(15): 21030129-7.
[6] 吴雪莲, 杨建, 屈阳, 王秀敏. 形状记忆聚合物智能材料在生物医学领域的应用[J]. 材料导报, 2021, 35(z2): 492-500.
[7] 冯茹, 许雅惠, 韩慧, 黄文峻, 王延斌, 李兴建. 4D打印形状记忆高分子的打印方法、驱动原理、变形模式和应用[J]. 材料导报, 2021, 35(5): 5147-5157.
[8] 李晓丹, 胡心雨, 刘小平, 刘小清, 申渝, 唐莹, 冯佳成. 苯并噁嗪树脂的研究新进展:智能化应用及能源、环境领域应用[J]. 材料导报, 2021, 35(3): 3209-3218.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed