Please wait a minute...
材料导报  2025, Vol. 39 Issue (12): 24050023-6    https://doi.org/10.11896/cldb.24050023
  无机非金属及其复合材料 |
点缺陷对二维锡烯材料结构、电学和磁学性质影响的第一性原理研究
申笠蒙1,2, 李玺3,*, 张博1
1 成都工业学院电子工程学院,成都 611730
2 四川大学物理学院,成都 610064
3 成都工业学院(宜宾校区)宜宾研究院,四川 宜宾 644000
First-principles Study on the Effect of Point Defects on the Structure, Electrical and Magnetic Properties of Two-dimensional Stanene
SHEN Limeng1,2, LI Xi3,*, ZHANG Bo1
1 School of Electronic Engineering, Chengdu Technological University, Chengdu 611730, China
2 College of Physics, Sichuan University, Chengdu 610064, China
3 Yibin Research Institute, Chengdu Technological University (Yibin Campus), Yibin 644000, Sichuan, China
下载:  全 文 ( PDF ) ( 14518KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 点缺陷的存在会影响锡烯的结构、电学和磁学等性质。本工作采用基于密度泛函理论的第一性原理计算系统地探讨了锡烯中几种典型点缺陷构型的结构、形成能、电学和磁学特性,包括单空位(SV)缺陷、双空位(DV)缺陷、Stone-Wales(SW)型缺陷和吸附单原子型缺陷。SW型缺陷由于有较低的反向势垒,很容易通过退火等工艺来消除;SV-1(55|66)和SV-2(3|555)型缺陷都是最稳定的单空位缺陷构型;由于相对能量更低,DV-1(5|8|5)型缺陷可以由两个单空位缺陷合并在一起而形成;DV-2(555|777)型缺陷可以通过克服一个很小的扩散势垒由DV-1(5|8|5)型缺陷转变产生。吸附原子型缺陷的形成是一个吸热过程,具有很好的稳定性,一旦产生就很难消除。讨论的所有缺陷都会对锡烯的电子结构产生影响;只有吸附原子型缺陷会在锡烯中引入磁性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
申笠蒙
李玺
张博
关键词:  第一性原理  锡烯  缺陷  电子结构  磁性    
Abstract: Structural point defects always affect the structure, electrical and magnetic properties of stanene. This study used first-principles calculations based on density functional theory to systematically investigate the structures, formation energies, electrical and magnetic properties of se-veral typical point defect configurations in stanene, including single vacancy (SV) defects, double vacancy (DV) defects, Stone-Wales (SW) type defects, and adatom type defects. SW defects can be easily recovered by annealing and other processes due to their low reverse barrier;Both SV-1(55|66) and SV-2(3|555) defects are the most stable single-vacancy defect configuration;Due to the lower energy, a DV-1(5|8|5) defect can be formed by the merger of two single-vacancy defects;DV-2(555|777) defect can arise from DV-1(5|8|5) defect by overcoming a small diffusion barrier. The formation of adatom-type defect is an endothermic process. Once an adatom-type defect is formed, it becomes challenging to eliminate. All the aforementioned defects affect the electronic structures of stanene, and only adatom-type defect introduces magnetism into stanene.
Key words:  first principles    stanene    defect    electronic structure    magnetic property
出版日期:  2025-06-25      发布日期:  2025-06-19
ZTFLH:  O469  
基金资助: 成都工业学院博士科研启动基金(2023RC052);宜宾市晶硅光伏领域“揭榜挂帅”科技项目
通讯作者:  *李玺,博士,成都工业学院副教授。目前主要从事高分子材料、薄膜材料和二维材料等方面的研究工作。lixifantasy@sina.com   
作者简介:  申笠蒙,博士,成都工业学院电子工程学院讲师。目前主要从事新型半导体材料、二维材料和稀磁半导体等方面的研究工作。
引用本文:    
申笠蒙, 李玺, 张博. 点缺陷对二维锡烯材料结构、电学和磁学性质影响的第一性原理研究[J]. 材料导报, 2025, 39(12): 24050023-6.
SHEN Limeng, LI Xi, ZHANG Bo. First-principles Study on the Effect of Point Defects on the Structure, Electrical and Magnetic Properties of Two-dimensional Stanene. Materials Reports, 2025, 39(12): 24050023-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050023  或          https://www.mater-rep.com/CN/Y2025/V39/I12/24050023
1 Rani S, Suganthi K, Roy S C. Journal of Electronic Materials, 2023, 52(6), 3563.
2 Sahoo S K, Wei K H. Advanced Materials Interfaces, 2019, 6(18), 1900752
3 Lyu J K, Zhang S F, Zhang C W, et al. Annalen der Physik, 2019, 531(10), 1900017.
4 Huang H, Wang Z, Luo N, et al. Physical Review B, 2015, 92(7), 075138.
5 Xu Y, Gan Z, Zhang S C. Physical Review Letters, 2014, 112(22), 226801.
6 Wang J, Xu Y, Zhang S C. Physical Review B, 2014, 90(5), 054503.
7 Rachel S, Ezawa M. Physical Review B, 2014, 89(19), 195303.
8 Wu S C, Shan G, Yan B. Physical Review Letters, 2014, 113(25), 256401.
9 Xu Y, Tang P, Zhang S C. Physical Review B, 2015, 92(8), 81112.
10 Ni Z, Minamitani E, Ando Y, et al. Physical Review B, 2017, 96(7), 075427.
11 Zhang R, Ji W, Zhang C, et al. Physical Chemistry Chemical Physics, 2016, 18(40), 28134.
12 Chou B H, Huang Z Q, Hsu C H, et al. New Journal of Physics, 2014, 16(11), 115008.
13 Lyu Y J, Chen Y, Ye F C, et al. Acta Physica Sinica, 2024, 73(8), 083101 (in Chinese).
吕永杰, 陈燕, 叶方成, 等. 物理学报, 2024, 73(8), 083101.
14 Vogt P, De Padova P, Quaresima C, et al. Physical Review Letters, 2012, 108(15), 155501.
15 Zhu F F, Chen W J, Xu Y, et al. Nature Materials, 2015, 14(10), 1020.
16 Niu T, Zhou M, Zhang J, et al. Journal of the American Chemical Society, 2013, 135(22), 8409.
17 Deng J, Xia B, Ma X, et al. Nature Materials, 2018, 17(12), 1081.
18 Meyer J C, Kisielowski C, Erni R, et al. Nano Letters, 2008, 8(11), 3582.
19 Gass M H, Bangert U, Bleloch A L, et al. Nature Nanotechnology, 2008, 3(11), 676.
20 Kotakoski J, Krasheninnikov A V, Kaiser U, et al. Physical Review Letters, 2011, 106(10), 105505.
21 Feng B, Ding Z, Meng S, et al. Nano Letters, 2012, 12(7), 3507.
22 Liu H, Feng H, Du Y, et al. 2D Materials, 2016, 3(2), 025034.
23 Li S, Wu Y, Tu Y, et al. Scientific Reports, 2015, 5, 7881.
24 Sahin H, Sivek J, Li S, et al. Physical Review B, 2013, 88(4), 045434.
25 Haldar S, Amorim R G, Sanyal B, et al. RSC Advances, 2016, 6(8), 6702.
26 Banhart F, Kotakoski J, Krasheninnikov A V. ACS Nano, 2011, 5(1), 26.
27 Gao J, Zhang J, Liu H, et al. Nanoscale, 2013, 5(20), 9785.
28 Kresse G, Furthmüller J. Computational Materials Science, 1996, 6(1), 15.
29 Blöchl P E. Physical Review B, 1994, 50(24), 17953.
30 Perdew J P, Burke K, Ernzerhof M. Physical Review Letters, 1996, 77(18), 3865.
31 Henkelman G, Uberuaga B P, Jónsson H. The Journal of Chemical Physics, 2000, 113(22), 9901.
32 Kroes J M H, Akhukov M A, Los J H, et al. Physical Review B, 2011, 83(16), 165411.
33 Zhang H, Zhao M, Yang X, et al. Diamond and Related Materials, 2010, 19(10), 1240.
34 Kotakoski J, Krasheninnikov A V, Nordlund K. Physical Review B, 2006, 74(24), 245420.
35 Padilha J E, Pontes R B. Solid State Communications, 2016, 225, 38.
36 Hastuti D P, Nurwantoro P. Materials Today Communications, 2019, 19, 459.
37 Dávila M E, Xian L, Cahangirov S, et al. New Journal of Physics, 2014, 16(9), 95002.
[1] 刘宇, 张健, 庞小通, 周小杰, 卢先正, 陈小敏, 李佳豪, 彭平. 镧镍系合金对氢化镁组织结构与储氢性能的影响及机理[J]. 材料导报, 2025, 39(8): 24040039-6.
[2] 温晋太, 胡怀谷, 安江山, 韩婷, 李欣俞, 胡季帆. 基于机器学习的快淬NdFeB磁体永磁性能分析与预测[J]. 材料导报, 2025, 39(8): 24030158-7.
[3] 吴学虎, 孙立贤, 徐芬, 李彬, 方淞文, 张靖, 陈翔, 宋领君, 卢俊铭, 高源, 杜毛湛, 徐如丹. 具有P和S双空位的镍钴纳米花复合材料用作超级电容器电极的研究[J]. 材料导报, 2025, 39(7): 24030138-7.
[4] 王聪, 杨富尧, 刘洋, 韩钰, 高洁, 孙浩, 刘成宇. 快淬速度和Ce浓度对贫稀土Ce-Fe-B合金相组成及磁性能的影响[J]. 材料导报, 2025, 39(7): 24010030-5.
[5] 周乃吉, 吴修胜, 温红娟, 施思嘉, 曹菊芳. 增强钛酸铋钠基陶瓷储能研究进展[J]. 材料导报, 2025, 39(6): 24010096-17.
[6] 李门, 李天鹏, 郭爱强, 刘建国, 高欣宝. vG和Cu/vG体系对H2O吸附的第一性原理研究[J]. 材料导报, 2025, 39(6): 23120052-5.
[7] 李雷, 孙东旭, 柴玉莹, 谢飞, 吴明. 剥离涂层下含缺陷管道腐蚀规律的瞬态数值模拟研究[J]. 材料导报, 2025, 39(5): 23010094-9.
[8] 陈阿青, 梁轻. Nb掺杂二氧化钛纳米管电子结构第一性原理计算[J]. 材料导报, 2025, 39(4): 23100185-6.
[9] 韦浪浪, 田秀刚, 梁健, 苗斌, 杨峰, 李杨, 郑士建. 基于聚焦离子束切割制样的热镀锌汽车钢板漏镀缺陷结构表征与成因分析[J]. 材料导报, 2025, 39(4): 23080246-7.
[10] 郭洪兵, 刘曰利. 基于Cs4PbBr6纳米晶的超高灵敏度电阻型湿敏传感器[J]. 材料导报, 2025, 39(3): 24040002-7.
[11] 孙斐, 赵洪峰, 缪奎. 钆掺杂的高非线性和低漏流SnO2基压敏电阻材料[J]. 材料导报, 2025, 39(2): 23110256-4.
[12] 蒋旭浩, 刘远超, 李耑, 徐一帆, 刘新昊, 李梓硕. 层状堆叠对α-石墨炔热电输运特性的影响[J]. 材料导报, 2025, 39(12): 24070118-6.
[13] 白雪, 文杜林, 王云杰, 苟杰, 苏欣. 三元混晶AlP1-xAsx(x=0,0.125,0.25,0.375,0.5,0.625,0.75,0.875,1)的电子结构和力学性质的第一性原理研究[J]. 材料导报, 2025, 39(12): 23080043-5.
[14] 李龙飞, 郑永泉, 万旺军, 徐至宏, 汪清利, 王琛, 贺馨平, 夏新辉, 夏阳. 锂离子电池缺陷检测技术及失效机理分析研究进展[J]. 材料导报, 2025, 39(11): 24100016-9.
[15] 范孟娜, 陶雪飞, 宗洪祥, 丁向东. 应变玻璃统一形成判据的研究进展[J]. 材料导报, 2025, 39(11): 24060225-10.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed