Please wait a minute...
材料导报  2025, Vol. 39 Issue (4): 23080246-7    https://doi.org/10.11896/cldb.23080246
  金属与金属基复合材料 |
基于聚焦离子束切割制样的热镀锌汽车钢板漏镀缺陷结构表征与成因分析
韦浪浪1, 田秀刚2, 梁健1, 苗斌1,*, 杨峰2, 李杨2, 郑士建1,*
1 河北工业大学材料科学与工程学院,天津 300401
2 唐山钢铁集团有限责任公司技术中心,河北 唐山 063000
Characterization and Formation Mechanism Analysis of Leakage Defects in Hot-dip Galvanized Automotive Steel Plate Based on Focused Ion Beam Cutting Sample Preparation
WEI Langlang1, TIAN Xiugang2, LIANG Jian1, MIAO Bin1,*, YANG Feng2, LI Yang2, ZHENG Shijian1,*
1 School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China
2 Technical Center of Tangshan Iron and Steel Group Co., Ltd., Tangshan 063000, Hebei, China
下载:  全 文 ( PDF ) ( 8655KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 漏镀缺陷易在先进高强汽车钢板的热镀锌过程中形成。一般认为合金元素的偏聚是几十到几百微米漏镀缺陷形成的原因,这些缺陷可以通过金相显微镜和SEM进行较好的表征分析以确定其形成原因。但是,针对几微米的针孔漏镀以及存在其他附生组织的漏镀缺陷,传统平面样和截面样的观察方法无法精细表征,对其形成机制的认知尚有不足。本研究针对广泛应用于汽车板的热镀锌780 MPa级双相钢,通过聚焦离子束切割技术对漏镀缺陷进行切割,制备了针对微米尺度漏镀缺陷的截面样品,并利用TEM对漏镀缺陷的结构及成分进行了表征。所得结果揭示了780 MPa级双相钢中存在的两种漏镀缺陷及其不同于一般认知的形成机制:第一种漏镀缺陷的形成是由于镀锌前钢基板表面存在坑状缺陷,这种漏镀缺陷内界面层物相和成分与未漏镀区域并无较大差异;第二种漏镀缺陷的形成是由于镀锌前钢基板表面存在铁颗粒,在镀锌过程中影响了正常的镀锌反应,这种漏镀缺陷内存在疏松的附生组织。为减少780 MPa级双相钢以及其他镀锌先进高强汽车钢板镀锌层中的这两种微米级漏镀缺陷,需要在钢板轧制阶段重点关注并减少表面坑状缺陷,并去除表面的多余铁颗粒。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韦浪浪
田秀刚
梁健
苗斌
杨峰
李杨
郑士建
关键词:  热镀锌  双相钢  聚焦离子束切割  透射电镜  漏镀缺陷结构    
Abstract: Leakage defects are easily formed during the hot-dip galvanizing process of advanced high-strength automotive steel plates. It is generally believed that the segregation of alloy elements causes the leakage defects ranging from tens to hundreds of micrometers. These defects can be well characterized and analyzed through metallographic microscopy and scanning electron microscopy to determine their formation reasons. However, for leakage defects with sizes of several micrometers like pinhole leakage defects and other ones with attached structures, conventional plane or cross-sectional specimen observation cannot provide precise characterization, restricting the understanding of their formation mechanism. By adopting the focused ion beam (FIB) cutting technique, this work prepared cross-sectional samples at certain leakage defect positions of the galvanized layer of 780 MPa dual-phase steel automobile plate, and performed internal structure and composition distribution characterization at the defect-substrate interfaces via transmission electron microscopy. The results indicate that there are two types of micrometer-level leakage defects in the galvanized layer, of which the formation mechanism differs from the general understanding. The first type (type-Ⅰ) of leakage defects are caused by the tiny pit defects on the steel plate surface before galvanizing, and have internal interface layers’ phases and composition similar to those in the non-leakage area. The second type (type-Ⅱ) of leakage defects mainly originate from the surface residual iron particles detrimental to the normal galvanizing reaction, and have loose attached structures. Hence it is recommended to focus and reduce surface pit defects and remove surface residual iron particles at the rolling stage of steel plates in order to inhibit the formation of these two types of micrometer-level leakage defects in the galvanized layers of 780 MPa dual-phase steel and other advanced high-strength galvanized automotive steel plates.
Key words:  hot-dip galvanizing    dual-phase steel    focusing ion beam cutting    transmission electron microscopy    leakage defect structure
出版日期:  2025-02-25      发布日期:  2025-02-18
ZTFLH:  TG174  
基金资助: 国家自然科学基金(52101013);河北省中央引导地方科技发展资金项目(226Z1012G);河钢材料技术研究院合作研究项目(HG2021104;HG2021123)
通讯作者:  *苗斌,博士,副教授,硕士研究生导师。研究方向为采用透射电镜和原位力学变形观察等先进表征分析技术,关注钛合金和钢铁等先进金属材料和氧化铝等先进陶瓷材料中位错、孪晶、界面和裂纹等缺陷以及它们在塑性变形和服役失效过程中的作用机理。miaobin@hebut.edu.cn
郑士建,教授,博士研究生导师。长期致力于满足国家重大需求的高性能金属结构材料研究,专注于原子尺度界面结构与材料性能关系的透射电子显微学。研究成果揭示了高温、高应力、强辐照等极端使役环境下原子尺度界面结构对高温合金、钛合金、层状金属材料力学性能、抗核辐照损伤性能的影响规律。sjzheng@hebut.edu.cn   
作者简介:  韦浪浪,河北工业大学材料科学与工程学院硕士研究生,在郑士建教授、苗斌副教授的指导下进行研究。目前主要从事双相钛合金和镀锌双相钢的微观界面结构和力学性能研究。
引用本文:    
韦浪浪, 田秀刚, 梁健, 苗斌, 杨峰, 李杨, 郑士建. 基于聚焦离子束切割制样的热镀锌汽车钢板漏镀缺陷结构表征与成因分析[J]. 材料导报, 2025, 39(4): 23080246-7.
WEI Langlang, TIAN Xiugang, LIANG Jian, MIAO Bin, YANG Feng, LI Yang, ZHENG Shijian. Characterization and Formation Mechanism Analysis of Leakage Defects in Hot-dip Galvanized Automotive Steel Plate Based on Focused Ion Beam Cutting Sample Preparation. Materials Reports, 2025, 39(4): 23080246-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23080246  或          https://www.mater-rep.com/CN/Y2025/V39/I4/23080246
1 Liu H, Li F, Shi W, et al. Surface and Coatings Technology, 2012, 206, 3428.
2 Wang J, Huang Q D, Liu J, et al. Chinese Journal of Materials Research, 2018, 32(8), 631 (in Chinese).
王劲, 黄青丹, 刘静, 等. 材料研究学报, 2018, 32(8), 631.
3 Fan C L, Li Q H. Hebei Metallurgy, 2013(6), 37 (in Chinese).
范春磊, 李庆华. 河北冶金, 2013(6), 37.
4 Guo T X. Steel Rolling, 2007, 24(2), 55 (in Chinese).
郭太雄. 轧钢, 2007, 24(2), 55.
5 Yang H L, Zhang S G, Hong J Y, et al. Chinese Journal of Materials Research, 2014, 28(1), 23 (in Chinese).
杨洪林, 张深根, 洪继要, 等. 材料研究学报, 2014, 28(1), 23.
6 Jin X, Bi W, Wang L, et al. Engineering Failure Analysis, 2020, 115, 104598.
7 Li X J, Ma E Q, Xiao Y Y, et al. Metallurgical Power, 2022(3), 11 (in Chinese).
李雄杰, 马二清, 肖洋洋, 等. 冶金动力, 2022(3), 11.
8 Li Y, Cui Y, Xu H W, et al. Electroplating & Finishing, 2013, 32(5), 32 (in Chinese).
李研, 崔阳, 徐海卫, 等. 电镀与涂饰, 2013, 32(5), 32.
9 Ma M N, Song J S, Hou G J, et al. Metallurgical Management, 2022(14), 96 (in Chinese).
马孟宁, 宋吉硕, 侯耿杰, 等. 冶金管理, 2022(14), 96.
10 Deng Z J, Lin C J. Surface and Coating, Metallurgical Industry Press, China, 2017 (in Chinese).
邓照军, 林承江. 表面与涂镀, 冶金工业出版社, 2017.
11 Shi L J, Xie Y K, Zuo Y, et al. Electroplating & Finishing, 2019, 38(21), 1172 (in Chinese).
施刘健, 谢义康, 左岳, 等. 电镀与涂饰, 2019, 38(21), 1172.
12 Wu X S, Cui Q Y, Zheng X F, et al. Chinese Metallurgy, 2018, 28(2), 57 (in Chinese).
巫雪松, 崔秋艳, 郑晓飞, 等. 中国冶金, 2018, 28(2), 57.
13 Wu Q W, Zhao A M, Yao S, et al. Materials Science Forum, 2018, 913, 294.
14 Bi W Z, Jin X Y, Wang L. Baosteel Technical Research, 2015, 9(3), 54.
15 Aslam I, Li B, Martens R L, et al. Materials Characterization, 2016, 120, 63.
16 Jin X, Hu G, Wang L, et al. Surface and Coatings Technology, 2020, 382, 125172.
17 Zhu M, Jin X Y, Chen G. Baosteel Technology, 2022(2), 1 (in Chinese).
朱敏, 金鑫焱, 陈光. 宝钢技术, 2022(2), 1.
18 Chu S J, Jin X Y, Bi W Z. Steel, 2021, 56(12), 126 (in Chinese).
储双杰, 金鑫焱, 毕文珍. 钢铁, 2021, 56(12), 126.
19 Wang K K, Hsu C W, Chang L, et al. Surface and Coatings Technology, 2020, 396, 125969.
20 Chen K F, Aslam I, Li B, et al. Metallurgical and Materials Transactions A, 2019, 50, 3748.
21 Deng Z J. Development and microstructure of 600 MPa grade high aluminum cold rolled dual-phase steel. Ph. D. Thesis, Wuhan University of Science and Technology, China, 2012 (in Chinese).
邓照军. 600 MPa级高铝系冷轧双相钢的开发及微观组织研究. 博士学位论文, 武汉科技大学, 2012.
22 Liang J, Miao B, Xiong Z L, et al. Applied Surface Science, 2023, 614, 156153.
[1] 李昂, 曾一达, 李智勇, 贺荣, 郭正华, 陈玉华, 江一, 杨子睿. 双相钢与铝合金异种金属激光焊接技术研究进展[J]. 材料导报, 2024, 38(22): 23090075-9.
[2] 马才女, 高雪云, 邢磊, 王海燕, 呼陟宇, 翟亭亭. 铁素体/马氏体双相钢拉伸变形过程中应力应变不均匀性分析[J]. 材料导报, 2023, 37(11): 21100187-4.
[3] 韩贵华, 张宝林, 苏礼超, 黄银平, 范子梁, 赵应征. 二肉豆蔻酰磷脂酰胆碱修饰的氧化铁纳米粒子在PC-12细胞内的分布[J]. 材料导报, 2019, 33(6): 1047-1051.
[4] 李坤, 贾涓, 熊玮, 谢欢, 宋新莉. 高强IF钢热镀锌层织构分析[J]. 材料导报, 2018, 32(24): 4334-4338.
[5] 唐兴昌, 张文娟, 王向飞, 张志坚. 1 200 MPa级冷轧双相钢组织性能及其热塑性[J]. 材料导报, 2018, 32(16): 2870-2875.
[6] 王希靖, 魏学玲, 张亮亮. 焊后时效处理对6082-T6铝合金搅拌摩擦焊接头的影响*[J]. 《材料导报》期刊社, 2017, 31(8): 62-65.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed