Please wait a minute...
材料导报  2023, Vol. 37 Issue (11): 21100187-4    https://doi.org/10.11896/cldb.21100187
  金属与金属基复合材料 |
铁素体/马氏体双相钢拉伸变形过程中应力应变不均匀性分析
马才女1, 高雪云1,2, 邢磊1, 王海燕1,2, 呼陟宇1, 翟亭亭1
1 内蒙古科技大学材料与冶金学院,内蒙古 包头 014010
2 内蒙古自治区新金属材料重点实验室,内蒙古 包头 014010
Analysis of Stress and Strain Inhomogeneity During the Tensile Deformation of Ferrite/Martensitic Dual Phase Steel
MA Cainv1, GAO Xueyun1,2, XING Lei1, WANG Haiyan1,2, HU Zhiyu1, ZHAI Tingting1
1 School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, Inner Monglia, China
2 Inner Mongolia Autonomous Region Key Laboratory of Advanced Metal Materials, Baotou 014010, Inner Monglia, China
下载:  全 文 ( PDF ) ( 7109KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以铁素体/马氏体双相钢为研究对象,经轧制及热处理后进行变形量为5%的拉伸实验,借助配有EBSD成像系统的场发射扫描电镜对实验钢塑性变形后的微区取向进行分析,并结合晶体塑性模拟DAMASK软件模拟其塑性变形行为。结果表明,经轧制变形获得的铁素体/马氏体双相钢,两相应力应变分配不均匀。实验钢中马氏体积累了更多的位错,KAM值更大。临近马氏体区域的铁素体基体Schmid因子更大,可达到0.49,在塑性变形过程中容易优先产生位错和滑移。晶体塑性模拟结果表明,变形初期,铁素体需承担较大的应变、马氏体承担应力以协调整体的变形。当拉伸变形继续发生时,两相应力应变分布的不均匀性将导致两相交界以及晶界处最先发生断裂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马才女
高雪云
邢磊
王海燕
呼陟宇
翟亭亭
关键词:  EBSD  双相钢  KAM  Schmid因子  晶体塑性模拟    
Abstract: In the present work, the ferrite / martensite dual-phase steel was taken as the research object. After rolling and heat treatment, the tensile test with a deformation of 5% was performed. The field emission scanning electron microscope equipped with EBSD imaging system was utilized to analyze the micro-area orientation of the experimental steel after plastic deformation, and the plastic deformation behavior was simulated by combining the crystal plasticity simulation DAMASK software. The results showed that the two corresponding stress-strain distribution of ferrite / martensite dual-phase steel obtained by rolling deformation was uneven. The martensite accumulated more dislocations in the experimental steel, and the KAM value was larger. The Schmid factor of ferrite matrix near the martensite region was larger than 0.49, and dislocations and slips were prone to occur preferentially during elastic deformation. The consequences of crystal plasticity simulation showed that at the beginning of deformation, ferrite needed to bear large strain and martensite needed to bear stress to coordinate the overall deformation. When the tensile deformation continues to occur, the inhomogeneity of the two analogous force-strain distribution will lead to the first fracture at the two-phase boundary and at the grain boundary.
Key words:  EBSD    dual-phase steel    KAM    Schmid factor    crystal plasticity simulation
出版日期:  2023-06-10      发布日期:  2023-06-19
ZTFLH:  TG142.1  
基金资助: 国家自然科学基金(51764047);内蒙古科技大学创新基金(2019QDL-B15)
通讯作者:  王海燕,通信作者,博士,教授,1996年毕业于内蒙古工学院机械制造工艺与设备专业;2004年毕业于内蒙古科技大学材料加工工程专业,获得硕士学位;2017年毕业于北京科技大学材料学专业,获得博士学位,2004年至今于内蒙古科技大学任教。主持国家自然科学基金3项,省部级以上科研项目9项,参与其他省部级以上项目10余项。在国内外学术期刊发表论文50余篇,授权发明专利12项,主编著作2部,参编5部。研究方向为稀土与铌优势资源高性能金属材料研究与开发。   
作者简介:  马才女,内蒙古科技大学在读研究生。2019年6月毕业于辽宁工业大学,获得工学学士学位。2019年9月至今于内蒙古科技大学材料科学与冶金学院攻读硕士学位,以第一作者在学术期刊上发表以及录用论文3篇,研究方向为先进高强钢的强韧化机制研究。
引用本文:    
马才女, 高雪云, 邢磊, 王海燕, 呼陟宇, 翟亭亭. 铁素体/马氏体双相钢拉伸变形过程中应力应变不均匀性分析[J]. 材料导报, 2023, 37(11): 21100187-4.
MA Cainv, GAO Xueyun, XING Lei, WANG Haiyan, HU Zhiyu, ZHAI Tingting. Analysis of Stress and Strain Inhomogeneity During the Tensile Deformation of Ferrite/Martensitic Dual Phase Steel. Materials Reports, 2023, 37(11): 21100187-4.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100187  或          http://www.mater-rep.com/CN/Y2023/V37/I11/21100187
1 Kimura Y, Inoue T, Yin F, et al. Science, 2008, 320(5879), 1057.
2 Tasan C C, Diehl M, Yan D, et al. Acta Materialia, 2014,81,386.
3 Azuma M, Goutianos S, Hansen N, et al. Materials Science and Techno-logy, 2013, 28(9-10),1092.
4 Wang W, Li M, He C, et al. Materials & Design, 2013,47, 510.
5 Tasan C C, Diehl M, Yan D, et al. Annual Review of Materials Research, 2015, 45(1), 391.
6 Roters F, Diehl M, Shanthraj P, et al. Computational Materials Science, 2019,158,420.
7 Zhang H, Liu J, Sui D, et al. International Journal of Plasticity, 2018(100), 69.
8 Gao X, Wang H, Xing L, et al. Materials Science and Engineering: A, 2021,805, 140547.
9 Groeber M A, Jackson M A. Integrating Materials and Manufacturing Innovation, 2014, 3(1), 56.
10 Cui G B, Ju X H, Wang Z Y, et al. China Metallurgy, 2019, 29(9), 39(in Chinese).
崔桂彬, 鞠新华, 王泽阳, 等. 中国冶金, 2019, 29(9), 39.
11 Alharbi K, Ghadbeigi H, Efthymiadis P, et al. Modelling and Simulation in Materials Science and Engineering, 2015, 23(8), 85005.
12 Zhang D X, Li Y, Ye Y X, et al. Acta Metallurgica Sinica, 2016, 52(3), 369(in Chinese).
张笃秀, 李祎, 叶友雄, 等. 金属学报, 2016, 52(3), 369.
13 Marvi-Mashhadi M, Mazinani M, Rezaee-Bazzaz A. Computational Materials Science, 2012,65, 197.
14 De Knijf D, F?jer C, Kestens L a I, et al. Materials Science and Engineering: A, 2015,638, 219.
15 Zhang X, Zhang S, Zhao Q, et al. Journal of Alloys and Compounds, 2018,740, 660.
16 Martin G, Sinclair C W, Lebensohn R A. Materials Science and Enginee-ring: A, 2014,603, 37.
17 Taylor M D, Matlock D K, De Moor E, et al. Journal of Materials Engineering and Performance, 2014, 23(10), 3685.
18 Woo W, Em V T, Kim E Y, et al. Acta Materialia, 2012, 60(20), 6972.
19 Wu Z Q, Ding H, Li H Y, et al. Materials Science and Engineering: A, 2013,584, 150.
20 Park K, Nishiyama M, Nakada N, et al. Materials Science and Enginee-ring: A, 2014,604,135.
[1] 金玉花, 张林, 张亮亮, 王希靖. 7050铝合金搅拌摩擦焊接头的微观织构演变与力学性能[J]. 材料导报, 2020, 34(20): 20107-20111.
[2] 杨西荣, 郝凤凤, 罗雷, 刘晓燕, 马炜杰, 王立元. 大角度ECAP变形模具制备纯钛的变形织构演化模拟[J]. 材料导报, 2020, 34(16): 16077-16082.
[3] 肖乾坤, 朱政强, 李铭锋. 紫铜超声波焊接微观结构演变及再结晶研究[J]. 材料导报, 2020, 34(10): 10157-10161.
[4] 张亮亮, 王希靖, 刘骁. 6082-T6铝合金搅拌摩擦过程中动态再结晶方式对焊核区织构类型的影响[J]. 材料导报, 2019, 33(4): 665-669.
[5] 唐兴昌, 张文娟, 王向飞, 张志坚. 1 200 MPa级冷轧双相钢组织性能及其热塑性[J]. 材料导报, 2018, 32(16): 2870-2875.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed