Please wait a minute...
材料导报  2025, Vol. 39 Issue (4): 23030047-7    https://doi.org/10.11896/cldb.23030047
  无机非金属及其复合材料 |
混凝土单轴压缩表面裂纹分布的一致分形特征
吴剑锋1,2,*, 黄雨悦1, 李赫赫1, 马德源3, 王彩华1,2
1 东北石油大学土木建筑工程学院,黑龙江 大庆 163318
2 东北石油大学秦皇岛校区,河北 秦皇岛 066004
3 秦皇岛兴龙建设工程有限公司,河北 秦皇岛 066300
Uniform Fractal Characteristics of Surface Crack Distribution in Concrete Under Uniaxial Compression
WU Jianfeng1,2,*, HUANG Yuyue1, LI Hehe1, MA Deyuan3, WANG Caihua1,2
1 School of Civil and Architectural Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
2 Qinhuangdao Campus of Northeast Petroleum University, Qinhuangdao 066004, Hebei, China
3 Qinhuangdao Xinglong Construction Engineering Co., Ltd., Qinhuangdao 066300, Hebei, China
下载:  全 文 ( PDF ) ( 8830KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过分形理论对表征混凝土单轴压缩表面裂纹分布一致分形特征的单一分形维数进行了定量计算。探讨了混凝土峰值应力、峰值应变、试样尺寸、粗骨料粒径、应力水平、单位体积吸收能、脆性指标等因素与其表面裂纹分布的单一分形维数的关系。建立了基于表面裂纹分布单一分形维数的混凝土单轴压缩弹性分形损伤本构方程。结果表明,混凝土在单轴压缩条件下的表面裂纹分布具有一致分形特征,满足自相似性;单一分形维数介于1.60~1.80,且单一分形维数越大,表面裂纹分布越复杂;单一分形维数随峰值应力、峰值应变、单位体积吸收能、应力水平的增大而增大,随粗骨料粒径、试样尺寸、脆性指标的增加呈降低趋势;基于单一分形维数的混凝土弹性分形损伤本构方程,理论曲线与应力-应变试验曲线吻合良好。研究结果可为分析混凝土裂纹演化规律提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴剑锋
黄雨悦
李赫赫
马德源
王彩华
关键词:  混凝土  单轴压缩  表面裂纹  一致分形  单一分形维数  本构方程    
Abstract: In this work, the single fractal dimension, which depicts the uniform fractal characteristics of the surface crack distribution of concrete under uniaxial compression, was quantitatively calculated following the fractal theory.The relationship between the single fractal dimension of concrete surface crack distribution and the relevant factors such as peak stress, peak strain, sample size, stress level, absorbed energy per unit vo-lume, and brittleness index was discussed.The elastic fractal damage constitutive equation of concrete under uniaxial compression based on the single fractal dimension of surface crack distribution was established.The results showed that the surface crack distribution of concrete under uniaxial compression had consistent fractal characteristics and exhibited self-similarity.The single fractal dimension of the concrete specimen (C30) was between 1.60 and 1.80, and a larger single fractal dimension corresponds to a more complicated distribution of surface cracks.The single fractal dimension was found to change positively with peak stress, peak strain, absorbed energy per unit volume, and stress level, and inversely with coarse aggregate particle size, sample size, and brittleness index.The theoretical curve of concrete elastic fractal damage constitutive equation based on single fractal dimension corresponded well with the tested stress-strain curve.The output of this work provides useful information for the analysis of crack evolution behavior of concretes.
Key words:  concrete    uniaxial compression    surface crack    uniform fractal    single fractal dimension    constitutive equation
出版日期:  2025-02-25      发布日期:  2025-02-18
ZTFLH:  TU528  
基金资助: 东北石油大学青年科学基金(2018QNQ-02)
通讯作者:  *吴剑锋,博士,东北石油大学土木建筑工程学院与东北石油大学秦皇岛校区副教授、硕士研究生导师。目前主要从事混凝土灾变破坏、混凝土黏弹性等方面的研究工作。wujianfeng0335@163.com   
引用本文:    
吴剑锋, 黄雨悦, 李赫赫, 马德源, 王彩华. 混凝土单轴压缩表面裂纹分布的一致分形特征[J]. 材料导报, 2025, 39(4): 23030047-7.
WU Jianfeng, HUANG Yuyue, LI Hehe, MA Deyuan, WANG Caihua. Uniform Fractal Characteristics of Surface Crack Distribution in Concrete Under Uniaxial Compression. Materials Reports, 2025, 39(4): 23030047-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23030047  或          https://www.mater-rep.com/CN/Y2025/V39/I4/23030047
1 Xie H P, Ju Y. Chinese Journal of Theoretical and Applied Mechanics, 1999, 31(3), 300 (in Chinese).
谢和平, 鞠杨. 力学学报, 1999, 31(3), 300.
2 Xie H P, Ju Y. Journal of China Coal Society, 1997, 22(6), 587 (in Chinese).
谢和平, 鞠杨. 煤炭学报, 1997, 22(6), 587.
3 Cao M S, Ren Q W. China Civil Engineering Journal, 2005, 38(12), 59 (in Chinese).
曹茂森, 任青文. 土木工程学报, 2005, 38(12), 59.
4 Cao M S, Ren Q W, Zhai A L, et al. Rock and Soil Mechanics, 2005, 26(10), 1570 (in Chinese).
曹茂森, 任青文, 翟爱良, 等. 岩土力学, 2005, 26(10), 1570.
5 Tian W, Dang F N, Chen H Q. Journal of Basic Science and Engineering, 2012, 20(3), 424 (in Chinese).
田威, 党发宁, 陈厚群. 应用基础与工程科学学报, 2012, 20(3), 424.
6 Dang F N, Fang J Y, Ding W H. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1), 2922 (in Chinese).
党发宁, 方建银, 丁卫华. 岩石力学与工程学报, 2015, 34(S1), 2922.
7 Zheng D, Song W, Fu J, et al. Construction and Building Materials, 2020, 258, 120351.
8 Yin Y J, Ren Q W, Shen L. Construction and Building Materials, 2020, 262, 120086.
9 Sun J, Shen Z H, Liao H F. Acta Materiae Compositae Sinica, DOI:10. 13801/j. cnki. fhclxb. 20240417. 003 (in Chinese).
孙杰, 申紫豪, 廖海峰. 复合材料学报, DOI:10. 13801/j. cnki. fhclxb. 20240417. 003.
10 Ebrahimkhanlou A, Athanasiou A, Hrynyk T D, et al. Journal of Bridge Engineering, 2019, 24(7), 04019059.
11 Liu Y Z, Dai K S, Li D S, et al. Journal of Building Engineering, 2021, 43, 103177.
12 Jiang S, Xu G, Zhao T Y. Water Resources and Power, 2018, 36(1), 124 (in Chinese).
蒋赏, 徐港, 赵恬悦. 水电能源科学, 2018, 36(1), 124.
13 Shang X Y, Yang J W, Li J S. Acta Materiae Compositae Sinica, 2020, 37(7), 1774 (in Chinese).
商效瑀, 杨经纬, 李江山. 复合材料学报, 2020, 37(7), 1774.
14 Yuan F, Yu J. China Sciencepaper, 2020, 15(6), 636 (in Chinese).
袁飞, 于江. 中国科技论文, 2020, 15(6), 636.
15 Yu J, Lyu X B, Qin Y J. Chinese Journal of Engineering, 2021, 43(10), 1385 (in Chinese).
于江, 吕旭滨, 秦拥军. 工程科学学报, 2021, 43(10), 1385.
16 Yin Y J, Ren Q W, Shen L, et al. Journal of Hydraulic Engineering, 2021, 52(11), 1270 (in Chinese).
殷亚娟, 任青文, 沈雷, 等. 水利学报, 2021, 52(11), 1270.
17 Fan X C, Luo C. Concrete, 2021(6), 23 (in Chinese).
范小春, 罗聪. 混凝土, 2021(6), 23.
18 Shang X Y, Yang J W, Wang S M, et al. Journal of Cleaner Production, 2021, 304, 127083.
19 Pan L X, Carrillo J L, Cao M S, et al. Engineering Fracture Mechanics, 2022, 264, 108329.
20 Cui S A, Xu L L, Rao J R, et al. Journal of Building Materials, 2024, 27(2), 99 (in Chinese).
崔圣爱, 徐李麟, 饶家锐, 等. 建筑材料学报, 2024, 27(2), 99.
21 Zhou J H, Wu X X, Yu H L, et al. Journal of Architecture and Civil Engineering, 2023, 40(4), 52 (in Chinese).
周静海, 吴晓鑫, 于杭琳, 等. 建筑科学与工程学报, 2023, 40(4), 52.
22 Luo L, Li T, Liu X M, et al. Journal of Henan University of Science and Technology (Natural Science), 2023, 44(3), 38 (in Chinese).
罗玲, 李桐, 刘雪梅, 等. 河南科技大学学报(自然科学版), 2023, 44(3), 38.
23 Mandelbrot B B, Wheeler J A. American Journal of Physics, 1983, 51(3), 286.
24 Talaat A, Emad A, Tarek A, et al. Ain Shams Engineering Journal, 2021, 12(1), 205.
25 Atkinson B K. Fracture Mechanics of Rock, Academic Press, London, 1987, pp. 27.
26 Xie H P, Peng R D, Ju Y, et al. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(15), 2603 (in Chinese).
谢和平, 彭瑞东, 鞠杨, 等. 岩石力学与工程学报, 2005, 24(15), 2603.
27 Xie H P, Ju Y, Li L Y. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17), 3003 (in Chinese).
谢和平, 鞠杨, 黎立云. 岩石力学与工程学报, 2005, 24(17), 3003.
28 Xu S L, Zhao Y H, Wu Z M. Journal of Materials in Civil Engineering, 2006, 18(6), 817.
29 Liang S M, Wei Y, Gao X. Cement and Concrete Research, 2017, 100, 84.
30 Bishop A W. In:Proceedings of the Geotechnical Conference, Oslo, Norway, 1967, pp. 142.
31 Ye L, Li X W, Ma X X, et al. Xinjiang Petroleum Geology, 2020, 41(5), 575 (in Chinese).
叶亮, 李宪文, 马新星, 等. 新疆石油地质, 2020, 41(5), 575.
32 Lemaitre J. Journal of Engineering Materials and Technology, 1985, 107(1), 83.
33 Tsai W T. Journal of Structural Engineering, 1988, 114(9), 2133.
34 Carreira D J, Chu K H. ACI Journal Proceedings, 1985, 82(6), 797.
35 Su Z. Journal of Water Resources and Architectural Engineering, 2012, 10(4), 174 (in Chinese).
苏征. 水利与建筑工程学报, 2012, 10(4), 174.
[1] 夏晋, 郑宇航, 汪雨青. 基于多尺度模型的混凝土有效电阻率与几何代表尺寸研究[J]. 材料导报, 2025, 39(4): 24020001-7.
[2] 姜骞, 于诚, 张茜, 周脉席, 刘建忠, 韩方玉. 清水混凝土的表面气孔缺陷形成与调控研究进展[J]. 材料导报, 2025, 39(4): 23110170-8.
[3] 田威, 郭健, 王文奎, 张景生, 王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究[J]. 材料导报, 2025, 39(3): 23070160-7.
[4] 任凯, 张祖华, 邓毓琳, 胡捷, 史才军. 荷载-氯盐侵蚀耦合作用下矿渣基地质聚合物混凝土梁的受弯性能[J]. 材料导报, 2025, 39(3): 24030079-7.
[5] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[6] 李克亮, 颜辰, 陈希, 陈爱玖, 杜晓蒙, 李伟华. 三种微生物矿化修复再生混凝土裂缝效果对比分析[J]. 材料导报, 2025, 39(2): 23120160-8.
[7] 杨海涛, 练鑫晟, 柳苗, 孙国文, 王伟. 混凝土全寿命周期固碳技术研究进展[J]. 材料导报, 2025, 39(2): 23120145-8.
[8] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[9] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[10] 杨淑雁, 徐宁阳. 多因素复合环境下钢筋与混凝土黏结性能研究进展[J]. 材料导报, 2025, 39(2): 23100224-10.
[11] 张凯帆, 王晓军, 王长龙, 胡凯建, 白云翼, 陈辰, 付兴帅. 废弃加气混凝土基胶凝材料协同锂渣制备充填料的研究[J]. 材料导报, 2025, 39(2): 23120264-8.
[12] 金伟良, 刘振东, 张军. 混凝土梁疲劳致力磁效应及数值模拟方法[J]. 材料导报, 2025, 39(1): 24010127-9.
[13] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[14] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[15] 闫凯, 张倩, 黄彬超, 张鑫. 火灾下活性粉末混凝土梁斜截面承载性能研究[J]. 材料导报, 2024, 38(9): 22110018-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed