Please wait a minute...
材料导报  2025, Vol. 39 Issue (7): 24010030-5    https://doi.org/10.11896/cldb.24010030
  金属与金属基复合材料 |
快淬速度和Ce浓度对贫稀土Ce-Fe-B合金相组成及磁性能的影响
王聪*, 杨富尧, 刘洋, 韩钰, 高洁, 孙浩, 刘成宇
国网智能电网研究院有限公司先进输电技术全国重点实验室, 北京 102209
Effect of Melt-Spinning Speed and Ce Content on the Phase Constitution and Magnetic Properties of Lean Rare Earth Ce-Fe-B Alloys
WANG Cong*, YANG Fuyao, LIU Yang, HAN Yu, GAO Jie, SUN Hao, LIU Chengyu
State Key Laboratory of Advanced Power Transmission Technology, State Grid Smart Grid Research Institute Co.,Ltd., Beijing 102209, China
下载:  全 文 ( PDF ) ( 4091KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Nd-Fe-B型永磁材料因其优异的室温磁性能而广泛应用于能源、轨道交通等领域。然而,材料的大量使用也造成了Nd、Pr等关键稀土元素的加速消耗和价格剧增。如何保证材料性能稳定的同时减少关键稀土元素的过度消耗是目前亟须解决的关键问题之一。选用高丰度稀土元素Ce替代关键稀土元素是一种有效的解决办法,对此,本工作用熔体快淬法制备了一系列贫稀土Ce1-xFe83+xB6 (x=0~4)合金,并系统研究了快淬速度和Ce浓度对合金相组成及磁性能的影响。结果表明:在熔体快淬过程中,加快快淬速度可有效增加合金中的Ce2Fe14B硬磁相含量,进而提高合金整体的磁性能。在13~21 m/s的快淬速度内,Ce11Fe83B6合金主要由Ce2Fe17和Ce2Fe14B相组成。随着快淬速度的加快,Ce2Fe14B相含量逐渐由16.89%增加至58.30%,相应地,合金的饱和磁极化强度Js、剩磁Jr和矫顽力Hc也表现为增大的趋势,当快淬速度为19 m/s时,其磁性能达到最佳,此时Js为0.84 T、Jr为0.41 T、Hc为106.72 kA/m。随着Ce浓度的降低,合金中的Ce2Fe14B相含量逐渐减少,相反地,生成了具有高饱和磁极化强度的α-Fe软磁相,尤其当Ce浓度为7%时,在软磁相含量增加以及与硬磁相间的交换耦合作用下,合金的JsJr分别提高至1.18 T和0.44 T。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王聪
杨富尧
刘洋
韩钰
高洁
孙浩
刘成宇
关键词:  Ce-Fe-B合金  快淬速度  Ce浓度  相组成  磁性能    
Abstract: Nd-Fe-B type permanent magnetic materials have been widely used in energy and rail transit due to their excellent room temperature magnetic properties. However, the continually growing demand for Nd-Fe-B magnets has greatly accelerated the depletion of critical rare earth elements including Nd, Pr, etc, which results in the rising prices of those critical rare earth elements. How to ensure the stability of the material pro-perties while reduce the excessive consumption of critical rare earth is one of the important issues that need to be solved urgently. The high-abundance rare earth Ce substitution for Nd is an effective solution. In this work, lean rare earth Ce11-xFe83+xB6 (x=0—4) alloys are prepared by melt-spinning method, and the effect of melt-spinning speed and Ce content on the phase constitution and magnetic properties of which are investigated. The results show that the increase of melt-spinning speed effectively increases the content of Ce2Fe14B hard magnetic phase during the melt-spinning process, which further improves the magnetic properties of the Ce11Fe83B6 alloy. In the melt-spinning speed range of 13—21 m/s, the Ce11Fe83B6 alloy is mainly composed of Ce2Fe17 and Ce2Fe14B phases. With the increase of melt-spinning speed, the Ce2Fe14B phase content gradually increases from 16.89% to 58.30%, and accordingly, the saturation magnetic polarization Js, remanence Jr and coercivity Hc show an increasing trend. When the melt-spinning speed is 19 m/s, the Ce11Fe83B6 alloy presents the optimum magnetic properties with the Js=0.84 T, Jr=0.41 T and Hc=106.72 kA/m. Furthermore, the Ce2Fe14B phase content gradually decreases with the decrease of Ce content. On the contrary, the α-Fe soft magnetic phase with high saturation magnetic polarization is gradually generated. When the Ce content decreases to the 7%, the increasing content of the soft magnetic phase and exchange coupling between α-Fe and Ce2Fe14B phase induce an increase of Js and Jr to 1.18 T and 0.44 T, respectively.
Key words:  Ce-Fe-B alloy    melt-spinning speed    Ce content    phase constitution    magnetic property
出版日期:  2025-04-10      发布日期:  2025-04-10
ZTFLH:  TG146.4  
基金资助: 国家电网公司总部科技项目(5500-202258312A-2-0-QZ)
通讯作者:  *王聪,国网智能电网研究院有限公司研发工程师。目前主要从事电工装备用稀土永磁、纳米晶软磁等电工磁性材料的研发、评估和应用研究。cwang630391414@163.com   
引用本文:    
王聪, 杨富尧, 刘洋, 韩钰, 高洁, 孙浩, 刘成宇. 快淬速度和Ce浓度对贫稀土Ce-Fe-B合金相组成及磁性能的影响[J]. 材料导报, 2025, 39(7): 24010030-5.
WANG Cong, YANG Fuyao, LIU Yang, HAN Yu, GAO Jie, SUN Hao, LIU Chengyu. Effect of Melt-Spinning Speed and Ce Content on the Phase Constitution and Magnetic Properties of Lean Rare Earth Ce-Fe-B Alloys. Materials Reports, 2025, 39(7): 24010030-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010030  或          https://www.mater-rep.com/CN/Y2025/V39/I7/24010030
1 Kong M R, Tian X, Wang Y, et al. Materials Reports, 2023, 37(Z1), 22050167 (in Chinese).
孔梦燃, 田晓, 王瑜, 等. 材料导报, 2023, 37(Z1), 22050167.
2 Li S J, Cui Z J, Li W T, et al. Materials Reports, 2021, 35(3), 03001 (in Chinese).
李世健, 崔振杰, 李文韬, 等. 材料导报, 2021, 35(3), 03001.
3 Trench A, Sykes J P. Engineering, 2020, 6, 115.
4 Yang J B, Han J Z, Liu S Q, et al. Materials China, 2015, 34(11), 819 (in Chinese).
杨金波, 韩景智, 刘顺荃, 等. 中国材料进展, 2015, 34(11), 819.
5 Coey J M D. Engineering, 2020, 6, 119.
6 Strnat K, Hoffer G, Olson J, et al. Journal of Applied Physics, 1967, 38, 1001.
7 Das D K. IEEE Transactions on Magnetics, 1969, 5, 214.
8 Song X, Jia W T, Li J, et al. Materials Reports, 2023, 37(3), 22120078 (in Chinese).
宋欣, 贾文涛, 李健, 等. 材料导报, 2023, 37(3), 22120078.
9 Wang F W, Liu L, Yuan J H, et al. Journal of Alloys and Compounds, 2024, 981, 173715.
10 Herbst J F, Croat J J, Pinkerton F E. Physical Review B, 1984, 29, 4176.
11 Croat J J, Herbst J F, Lee R W, et al. Applied Physics Letters, 1984, 44, 148.
12 Matsuura Y. Journal of Magnetism and Magnetic Materials, 2006, 303, 344.
13 Liao X F, Zhang J S, Yu H Y, et al. Journal of Magnetism and Magnetic Materials, 2019, 489, 165444.
14 Zhang M, Li Z B, Shen B G, et al. Journal of Alloys and Compounds, 2015, 651, 144.
15 Gutfleisch O, Willard M A, Brück E, et al. Advanced Materials, 2011, 23, 821.
16 Zhang Z Y, Zhao L Z, Zhong X C, et al. Journal of Magnetism and Magnetic Materials, 2017, 441, 429.
17 Herbest J F, Meyer M S, Pinkerton F E. Journal of Applied Physics, 2012, 111, 07A718.
18 Zhou Q Y, Liu Z, Guo S, et al. IEEE Transactions on Magnetics, 2015, 51, 1.
19 Jiang Q Z, He L K, Rehman S U, et al. Rare Metal Materials and Engineering, 2019, 48(11), 3686 (in Chinese).
江庆政, 何伦可, Sajjad Ur Rehman, 等. 稀有金属材料与工程, 2019, 48(11), 3686.
20 Zhang J S, Liao X F, Zhou Q, et al. Journal of Magnetism and Magnetic Materials, 2022, 552, 169217.
21 Zhang L L, Jiang Q Z, Wang L, et al. Journal of Magnetism and Magnetic Materials, 2019, 474, 305.
22 Wang T, Medraj M. Journal of Magnetism and Magnetic Materials, 2018, 460, 95.
23 Zhang J S, Li W, Liao X F, et al. Journal of Materials Science and Technology, 2019, 35, 1877.
24 Niu Y Z, Wang C, Yang F Y, et al. Ordnance Material Science and Engineering, 2023, 46(6), 127 (in Chinese).
牛艳召, 王聪, 杨富尧, 等. 兵器材料科学与工程, 2023, 46(6), 127.
25 Grigoras M, Lostun M, Stoian G, et al. Journal of Magnetism and Magnetic Materials, 2017, 432, 119.
26 Li S M, Zhou B, Liao X F, et al. Intermetallics, 2022, 150, 107688.
27 Yoshizawa Y, Ohta M. Journal of Physics:Conference Series, 2009, 144, 012071.
28 Herbst J F, Yelon W B. Journal of Magnetism and Magnetic Materials, 1986, 54-57(1), 570.
29 Rietveld H M. Journal of Applied Crystallography, 1969(2), 65.
30 Tian X. Journal of Inner Mongolia Normal University (Natural Science Edition), 2006, 35(1), 62 (in Chinese).
田晓. 内蒙古师范大学学报:自然科学汉文版, 2006, 35(1), 62.
31 Kou X C, Boer F R, Grössinger R, et al. Journal of Magnetism and Magnetic Materials, 1998, 177-181(2), 1002.
32 Basak M Rahman M L, Ahmed M F, et al. Journal of Alloys and Compounds, 2022, 895, 162694.
33 Teplykh P A, Pirogov A N, Kuchin A G, et al. Physica B, 2004, 350, e99.
34 Wang L, Wang J, Rong M H, et al. Journal of Rare Earths, 2018, 36(11), 1179.
35 Szymura S, Rabinovich Y M, Bala H, et al. Journal de Physique Ⅲ, 1992, 2, 267.
36 Zhang W Y, Zhang S Y, Yan A R, et al. Journal of Magnetism and Magnetic Materials, 2001, 225, 389.
37 Kneller E F, Hawig R. IEEE Transactions on Magnetics, 1991, 27, 3588.
38 Chen Y F, Xu B, Zhou Y J, et al. Journal of Magnetic Materials and Devices, 2023, 54(1), 108 (in Chinese).
陈羽峰, 徐斌, 周玉娟, 等. 磁性材料及器件, 2023, 54(1), 108.
39 Chen Y W, Jiang Q Z, Li X, et al. Journal of Superconductivity and Novel Magnetism, 2021, 34, 3395.
40 Miralles C G, Jenuš P. Journal of Physics D:Applied Physics, 2021, 54, 303001.
41 He J Y, Yu Z G, Cao J L, et al. Journal of Materials Chenmistry C, 2022, 10, 2080.
42 Wang J X, Zhang D T, Huang J, et al. Journal of Chinese Society of Rare Earths, 2012, 30(2), 186 (in Chinese).
王剑侠, 张东涛, 黄俊, 等. 中国稀土学报, 2012, 30(2), 186.
43 Li F, Liu Y, Yang J, et al. Chinese Rare Earths, 2005, 26(2), 22 (in Chinese).
李芳, 刘颖, 杨锦, 等. 稀土, 2005, 26(2), 22.
[1] 李娜, 丁西安, 王永强, 陆勤阳, 郑成思. Cu对含Ce高强高效无取向硅钢磁性能的影响[J]. 材料导报, 2024, 38(6): 22100266-7.
[2] 叶登建, 代波. 放电等离子烧结Bi、Ce掺杂钇铁石榴石陶瓷的微观结构与磁性能[J]. 材料导报, 2024, 38(4): 22070054-5.
[3] 常洪雷, 王晓龙, 郭政坤, 冯攀, 李少伟, 刘健. 低真空环境对硬化水泥浆体力学性能的影响[J]. 材料导报, 2024, 38(4): 22070290-6.
[4] 王海军, 牛宇豪, 凌海涛, 乔家龙, 何飞, 仇圣桃. 无取向硅钢中微细夹杂物控制研究进展[J]. 材料导报, 2024, 38(3): 22040407-9.
[5] 王涛, 陈冲, 张国赏, 魏世忠, 毛丰, 熊美. 铝钢双金属液固复合铸造研究现状[J]. 材料导报, 2024, 38(17): 22110329-8.
[6] 杨一哲, 林旭健, 许晓莹, 林恒舟, 陈韦羽, 叶财发. 葡萄糖酸钠对硅磷酸钾镁水泥基本性能的影响[J]. 材料导报, 2024, 38(17): 23080008-6.
[7] 何承绪, 马光, 毛航银, 祝志祥, 韩钰, 高洁, 张一航, 胡卓超. 耐热型取向硅钢涂层特性与磁性能[J]. 材料导报, 2024, 38(1): 22030301-5.
[8] 何承绪, 高洁, 毛航银, 马光, 陈新, 祝志祥, 张一航, 胡卓超. 退火温度对耐热型取向硅钢组织与磁性能的影响[J]. 材料导报, 2023, 37(8): 21090231-5.
[9] 杨亚苹, 李艳辉, 张伟. 脱合金化法制备纳米多孔铂合金的研究进展[J]. 材料导报, 2023, 37(3): 21020061-7.
[10] 聂光临, 刘一军, 汪庆刚, 黄玲艳, 吴洋, 潘利敏, 包亦望, 饶平根. 基于机械活化法制备高强韧高柔性建筑陶瓷[J]. 材料导报, 2023, 37(24): 22040120-9.
[11] 张华, 李梦冉, 徐澎鹏, 李晶晶, 张学斌, 刘伟, 汪金芝, 苏海林. 二级颗粒粒径对颗粒级配软磁粉芯磁性能的影响[J]. 材料导报, 2023, 37(18): 22020065-5.
[12] 郑皓天, 王子龙, 李翔. 基于纳米晶结构的非晶合金成分设计[J]. 材料导报, 2022, 36(7): 20090031-7.
[13] 张光睿, 姚特, 龚沛, 乔禹, 王婷婷, 梁雨萍, 郝宏波. (Fe81.5Co1.5Ga17)100-xTbx合金结构及其磁性能[J]. 材料导报, 2022, 36(5): 20120138-5.
[14] 潘琳茹, 李雪莲, 王丽, 孙禄涛, 魏彬彬, 郭春生. 覆铜热处理对Fe80Si9B11非晶铁芯软磁性能的影响:一种改善非晶铁芯温度分布的方法[J]. 材料导报, 2022, 36(3): 20090082-4.
[15] 孙赫男, 关岩, 毕万利, 孙美硕. 烧结氧化镁粉的晶体特征对磷酸镁水泥力学性能的影响[J]. 材料导报, 2022, 36(19): 20120126-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed