Please wait a minute...
材料导报  2025, Vol. 39 Issue (7): 23120207-9    https://doi.org/10.11896/cldb.23120207
  金属与金属基复合材料 |
类魔方式的多孔超材料设计及可调控弹性模量的研究
黄昆鹏1,2, 张雨波1,2, 杨楠1,2,*
1 汕头大学工程学院, 广东 汕头 515063
2 汕头大学智能制造教育部重点实验室, 广东 汕头 515063
Design of Rubik's Cube-like Porous Metamaterials and Study on Their Adjustable Elastic Modulus
HUANG Kunpeng1,2, ZHANG Yubo1,2, YANG Nan1,2,*
1 Engineering College, Shantou University, Shantou 515063, Guangzhou, China
2 Key Laboratory of Intelligent Manufacturing of Ministry of Education, Shantou University, Shantou 515063, Guangzhou, China
下载:  全 文 ( PDF ) ( 50488KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用魔方变化模式多样的特点,忽略魔方滑轨球心体积的影响,将魔方的子块替换成多孔单元,通过建模、仿真、计算,研究这种类魔方组合结构在不同魔方编程模式下所具有的多种弹性模量;通过打印样件、实验验证仿真,验证了在同种成形材料下的类魔方组合结构;最后通过改变组合模式,有效调控其整体弹性模量。组合结构中上下子单元的结构体积分数差异越大,整体结构弹性模量跨度越大,并且同类结构中面心立方晶格的弹性模量要比立方晶格跨度更大。当面心立方晶格子结构上下层的体积比为1∶9时,整个组合结构的弹性模量最小为2.2 MPa,最大为54.29 MPa。本工作所提出的多孔类魔方结构有望实现同一子结构的多种可编程弹性模量,作为一种多功能材料在医疗、航空航天、机械制造等领域具有应用潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄昆鹏
张雨波
杨楠
关键词:  多孔结构  类魔方组合设计  弹性模量    
Abstract: By taking advantage of the characteristics of the cube's diverse changing modes and ignoring the influence of the spherical volume of the Rubik's slide rail, the subblocks of the cube are replaced with porous units. Through modeling, simulation and calculation, the elastic modulus of the Rubik's Cube-like composite structure under different programming modes is studied. Finally, it is verified that under the same forming material, the Rubik's Cube-like composite structure can effectively regulate its overall elastic modulus by changing its combination mode. The larger the difference in the volume fraction of the subunits, the larger the elastic modulus span of the whole structure, and the elastic modulus of the face-centered cubic lattice is larger than that of the cubic lattice span. When the ratio of upper and lower volume fraction of the face-centered cubic lattice substructure is 1∶9, the elastic modulus of the whole composite structure is minimum 2.2 MPa and maximum 54.29 MPa. The porous Rubik's Cube structure proposed in this work is expected to realize multiple programmable elastic moduli of the same substructure, and can be used as a multi-functional material in medical, aerospace, mechanical manufacturing and other fields.
Key words:  porous structure    Rubik's Cube combination design    elastic modulus
出版日期:  2025-04-10      发布日期:  2025-04-10
ZTFLH:  TH145  
基金资助: 国家自然科学基金(11872046);广东省教育厅重点专项(2021ZDZX2007);广东省基础与应用基础研究基金(2025A1515011204);汕头大学科研启动项目(NTF19012)
通讯作者:  *杨楠,博士,汕头大学工学院机械系教授、博士研究生导师。目前主要从事多孔结构、机械超材料“结构-性能”等方面的研究工作。发表论文40余篇。nyang@stu.edu.cn   
作者简介:  黄昆鹏,2021年6月于河南工程学院获得工学学士学位。现为汕头大学工学院硕士研究生,在杨楠教授的指导下进行研究。目前主要研究领域为机械超材料结构设计。张雨波,2020年7月毕业于西安理工大学,获得工学学士学位。2023年毕业于汕头大学,获得硕士学位,在杨楠教授的指导下进行研究。主要研究领域为机械超材料结构设计。
引用本文:    
黄昆鹏, 张雨波, 杨楠. 类魔方式的多孔超材料设计及可调控弹性模量的研究[J]. 材料导报, 2025, 39(7): 23120207-9.
HUANG Kunpeng, ZHANG Yubo, YANG Nan. Design of Rubik's Cube-like Porous Metamaterials and Study on Their Adjustable Elastic Modulus. Materials Reports, 2025, 39(7): 23120207-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23120207  或          https://www.mater-rep.com/CN/Y2025/V39/I7/23120207
1 Yin J F, Cai L, Fang X, et al. Advances in Mechanics, 2022, 52(3), 508(in Chinese).
尹剑飞, 蔡力, 方鑫, 等. 力学进展, 2022, 52(3), 508.
2 Kshetrimayum R S. IEEE Potentials, 2004, 23(5), 44.
3 Cai W S, Uday K C, Alexander V K, et. al. Nature Photonics, 2007, 1(4), 224.
4 Vladimir M S. Nature Photonics, 2007, 1(1), 41.
5 Wu L L, Tian X Y, Li D C, et al. Science & Technology Review, 2022, 40(1), 161(in Chinese).
吴玲玲, 田小永, 李涤尘, 等. 科技导报, 2022, 40(1), 161.
6 Grima J N, Caruana-Gauci R, Attard D, et al. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468(2146), 3121.
7 Bertoldi K, Reis P M, Willshaw S, et al. Advanced Materials, 2010, 22(3), 361.
8 Sahab B, Jongmin S, James C, et al. Advanced Materials, 2013, 25(36), 5044.
9 Guo X G, Ni X Y, Li J H, et al. Advanced Materials, 2021, 33(3), 2004919.
10 Ha C, Hestekin E, Li J H, et al. Physica Status Solidi, 2015, 252(7), 1431.
11 Florijn B, Coulais C, Hecke M V, et al. Physical Review Letters, 2014, 113(17), 175503.
12 El H C, Buskohl P R, Tabor C E, et al. Nature Communications, 2021, 12(1), 1.
13 Meng Z Q, Chen W T, Mei T, et al. Extreme Mechanics Letters, 2021, 43, 101180.
14 Christensen J, Abajo F J G D. Physical Review B, 2012, 86(2), 024301.
15 Jones R M. Mechanical Meta-Materials, 2018, 246, 14.
16 Amir A Z. Materials Horizons, 2016, 3(5), 371.
17 Neugebauer A, Chen K, Tang A, et al. Energy and Buildings, 2014, 79, 47.
18 Smith B H, Szyniszewski S, Hajjar J, et al. Materials Science, 2012, 2(4), 399.
19 Miller W, Evans K E A. Applied Physics Letters, 2015, 106(23), 231903.
20 Ali E A, Jiyoung O H, Mikhail E A E, et al. Science, 2009, 323(5921), 1575.
21 Joseph N G, Roberto C G. Nature Materials, 2012, 11(7), 565.
22 Mahmoud D, Mohamed A. Journal of Manufacturing and Materials Processing, 2017, 1(2), 13.
23 Niknam H, Akbarzadeh A H, Rodrigue D, et al. Materials & Design, 2018, 148, 188.
24 Qi D, Lu Q Y, He C W, et al. Extreme Mechanics Letters, 2019, 32, 100568.
25 William F H. Fotheringham's sporting pastimes, London: Anova Books, 2007, pp.25.
26 Jerry S, David S, Huang W H, et al. The cube: the ultimate guide to the world's bestselling puzzle-secrets, stories, solutions, New York: Black Dog & Leventhal Publishers, 2009, pp.1.
27 Stephen V D. Reference Reviews, 2001, 15(1), 38.
28 Hukmani K, Kolekar S, Vobugari S. Engineering Letters, 2021, 29(4), 1535.
29 Mu L J, Hu W J, Tao J L. China Measurement & Test, 2017, 43(11), 129(in Chinese).
穆磊金, 胡文军, 陶俊林. 中国测试, 2017, 43(11), 129.
[1] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[2] 霍海峰, 杨雅静, 孙涛, 樊戎, 蔡靖, 胡彪. 有压与无压烧结雪无侧限抗压强度对比试验研究[J]. 材料导报, 2024, 38(5): 23060124-6.
[3] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[4] 李超, 周梅, 李杨, 张凯, 郭凌志. 固废粗集料平均弹性模量与混凝土弹性模量的相关性[J]. 材料导报, 2024, 38(4): 22050271-8.
[5] 倪彤元, 杜鑫, 莫云波, 黄森乐, 杨杨, 刘金涛. 基于ANN的HVFAC拉伸性能预测评价[J]. 材料导报, 2024, 38(10): 23070117-9.
[6] 付宁宁, 谢绍兴, 周禄军, 丁亚萍, 孟凡彬. 电纺碳纳米纤维/石墨烯气凝胶薄膜的可控制备与电磁屏蔽性能研究[J]. 材料导报, 2023, 37(24): 22090180-5.
[7] 郑敏, 杨瑾, 张华. 多孔金属材料的制备及应用研究进展[J]. 材料导报, 2022, 36(18): 20110092-16.
[8] 黄薇, 李红强, 官航, 冯海洋, 韦业, 古孜努尔·阿巴白克力, 赖学军, 曾幸荣. 天然木材的功能化及其应用进展[J]. 材料导报, 2022, 36(18): 20090093-7.
[9] 侯永强, 尹升华, 曹永, 杨世兴, 张敏哲. 尾砂胶结充填体单轴受压应力-应变关系及其损伤本构模型[J]. 材料导报, 2022, 36(16): 21010265-8.
[10] 黄金花, 焦志伟, 陈先义, 赵小波, 姚英邦, 陶涛, 梁波, 鲁圣国. 黄豆的多孔结构及对亚甲基蓝染料的去除性能研究[J]. 材料导报, 2021, 35(z2): 520-524.
[11] 史金华, 史才军, 欧阳雪, 刘剑辉, 黄勇, 吴泽媚. 超高性能混凝土受压弹性模量研究进展[J]. 材料导报, 2021, 35(3): 3067-3075.
[12] 唐琴, 周大利, 陈先勇. 清江河虾头胸甲基富氮/氧分级多孔叠炭片的制备及电化学性能[J]. 材料导报, 2021, 35(22): 22016-22021.
[13] 徐培蓁, 陈发滨, 李泉荃, 任艺楠, 吴春然, 朱亚光. 微生物矿化沉积对再生骨料界面过渡区的影响[J]. 材料导报, 2020, 34(6): 6095-6099.
[14] 李卿, 赵国瑞, 马文有, 余红雅, 刘敏. 选区激光熔化成形多孔Ti6Al4V (ELI)合金的拉伸性能及断裂机制[J]. 材料导报, 2020, 34(4): 4073-4076.
[15] 宋维龙, 朱志铎, 浦少云, 宋世攻, 彭宇一, 顾晓彬, 魏永强. 碱激发二元/三元复合工业废渣胶凝材料的力学性能与微观机制[J]. 材料导报, 2020, 34(22): 22070-22077.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed