Please wait a minute...
材料导报  2025, Vol. 39 Issue (7): 23120194-11    https://doi.org/10.11896/cldb.23120194
  高分子与聚合物基复合材料 |
聚合物材料正热膨胀调控研究进展
吴焱, 乔英杰*, 白成英, 王晓东, 张晓红
哈尔滨工程大学材料科学与化学工程学院, 哈尔滨 150001
Progress on Positive Thermal Expansion Control of Polymer Materials
WU Yan, QIAO Yingjie*, BAI Chengying, WANG Xiaodong, ZHANG Xiaohong
School of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
下载:  全 文 ( PDF ) ( 31045KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热膨胀是材料在温度升高时几何尺寸增大,温度降低时几何尺寸减小的现象。目前,国内外的研究重心多聚焦于零膨胀和负膨胀材料,相比之下,对正膨胀材料的研究则显得较为稀缺。在金属材料、陶瓷材料、聚合物材料和复合材料中,聚合物材料拥有最高的热膨胀能力,其中常用的聚合物以尼龙-66(PA-66)线膨胀系数最高,在25~85 ℃时为162.3×10-6 K-1。在柔性传感器和软机器人等领域要求材料有更高的热膨胀能力甚至对材料热膨胀能力进行调控,热膨胀能力不适配的多种材料一起使用会造成材料表面产生裂纹或者界面剥落等缺陷,从而限制材料的应用。近年来,对提高聚合物材料热膨胀能力的研究方法大致可以分为基体优化、分子设计和结构设计三种方式。本文综述了近年来正膨胀聚合物材料的研究进展,重点介绍了分子设计和结构设计两种方法,并指出这两种方法均显著提升了材料的线膨胀系数,为后期对尺寸变化随温度变化呈线性关系的高热膨胀能力聚合物材料的研究提供文献支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴焱
乔英杰
白成英
王晓东
张晓红
关键词:  聚合物  热膨胀  分子设计  结构设计  正热膨胀调控    
Abstract: Thermal expansion is the phenomenon where the geometric dimensions of a material increase as the temperature rises, and decrease as the temperature decreases. At present, the research focus at home and abroad is mostly on zero expansion and negative expansion materials, while research on positive expansion materials appears to be relatively scarce. Among metal materials, ceramic materials, polymer materials, and composite materials, polymer materials have the highest thermal expansion capacity. Among commonly used polymers, nylon 66 (PA-66) has the highest linear expansion coefficient, which is 162.3×10-6 K-1 at 25—85 ℃. In the fields of flexible sensors and soft robots, materials are required to have higher thermal expansion capabilities and even control their thermal expansion capabilities. The use of multiple materials with mismatched thermal expansion capabilities can cause defects such as surface cracks or interface peeling, thereby limiting the application of materials. In recent years, research methods for improving the thermal expansion capacity of polymer materials can be roughly divided into three types: matrix optimization, molecular design, and structural design. This article reviews the research progress of positively expanding polymer materials in recent years, with a focus on two methods: molecular design and structural design, and it is pointed out that both methods significantly improve the linear expansion coefficient of the material. This provides literature support for the later research on high thermal expansion polymer materials with linear relationship between size change and temperature change.
Key words:  polymer    thermal expansion    molecular design    structural design    positive thermal expansion regulation
出版日期:  2025-04-10      发布日期:  2025-04-10
ZTFLH:  TQ317.9  
基金资助: 国家自然科学基金(U2341237;52203084)
通讯作者:  *乔英杰,哈尔滨工程大学材料科学与化学工程学院教授、博士研究生导师,长期从事树脂基复合材料、结构功能一体化材料设计及评价研究。qiaoyingjie@hrbeu.edu.cn   
作者简介:  吴焱,2022年9月于南京晓庄学院获得工学学士学位。目前主要研究领域为树脂基复合材料。
引用本文:    
吴焱, 乔英杰, 白成英, 王晓东, 张晓红. 聚合物材料正热膨胀调控研究进展[J]. 材料导报, 2025, 39(7): 23120194-11.
WU Yan, QIAO Yingjie, BAI Chengying, WANG Xiaodong, ZHANG Xiaohong. Progress on Positive Thermal Expansion Control of Polymer Materials. Materials Reports, 2025, 39(7): 23120194-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23120194  或          https://www.mater-rep.com/CN/Y2025/V39/I7/23120194
1 Chen Z W, Zhu B, Hu Y, et al. Heavy Casting and Forging, 2023 (5), 1 (in Chinese).
陈知伟, 朱斌, 胡瑜, 等. 大型铸锻件, 2023(5), 1.
2 Mary T A, Evans J S O, Vogt T, et al. Science, 1996, 272(5258), 90.
3 Fu L J, Wang X L, Wang W P, et al. Journal of Artificial Crystals, 2019, 48(9), 1703 (in Chinese).
付林杰, 王献立, 王伟鹏, 等. 人工晶体学报, 2019, 48(9), 1703.
4 Shi N K. Synthesis and mechanism study of novel framework structure negative thermal expansion compounds, Beijing University of Science and Technology, China, 2020 (in Chinese).
施耐克. 新型框架结构负热膨胀化合物合成及机理研究. 硕士学位论文, 北京科技大学, 2020.
5 Lim T C. Journal of Materials Science, 2012, 47(1), 368.
6 Wang W, Huang R, Zhao Y, et al. Journal of Alloys and Compound, 2018, 740, 47.
7 Ji Q, Moughames J, Chen X, et al. Communications Materials, 2021, 2(1), 1.
8 Breger J C, Yoon C, Xiao R, et al. ACS Applied Materials and Interfaces, 2015, 7(5), 3398.
9 Tao R, Chen Y, Zhi G, et al. Composite Structures, 2023, 329, 117808.
10 Zhou Y, Yang Y, Jian A, et al. Composites Science and Technology, 2022, 227, 109603.
11 Tai Y, Lubineau G. Advanced Science, 2017, 4(4), 1.
12 Zhao Y, Hua M, Yan Y, et al. Annual Review of Control, Robotics, and Autonomous Systems, 2022, 5, 515.
13 Lange S, Arroval T, Saar R, et al. Polymer-Plastics Technology and Engineering, 2015, 54(3), 301.
14 Kanazawa S, Kusaka Y, Ushijima H. Japanese Journal of Applied Physics, 2019, 58(8), 088002.
15 Muff L F, Mills A S, Riddle S, et al. Advanced Materials, 2023, 35(18), 1.
16 Muff L F, Weder C. Advanced Intelligent Systems, 2023, 5(2), 2200265.
17 Keneth E S, Lieberman R, Pahima A, et al. Sensors and Actuators A: Physical, 2023, 363, 114683.
18 Yang K, Fu C, Li C, et al. Sensors and Actuators A: Physical, 2022, 341, 113553.
19 Liu F, Jin Y, Li J, et al. Composites Science and Technology, 2023, 241, 110142.
20 Savić-Šević S, Pantelić D, Murić B, et al. Journal of Materials Chemistry C, 2021, 9(26), 8163.
21 Ma Z, Sun Y, Yuan X, et al. Journal of the Chinese Ceramic Society, 2023, 51(1), 260 (in Chinese).
马之杰, 孙莹, 袁秀良, 等. 硅酸盐学报, 2023, 51(1), 260.
22 Zhu S, Wu P, Yelemulati H, et al. Matter, 2021, 4(6), 1832.
23 Takenaka K. Science and Technology of Advanced Materials, 2012, 13(1), 013001.
24 Neely L A, Kochergin V, See E M, et al. Journal of Materials Science, 2014, 49(1), 392.
25 Boyer R F, Spencer R S. Journal of Applied Physics, 1944, 15(4), 398.
26 Sun J, Chen Z T, Zhao X L. Applied Chemistry, 2022, 51(10), 3012 (in Chinese).
孙洁, 陈忠涛, 赵秀丽. 应用化工, 2022, 51(10), 3012.
27 Wei C, Srivastava D, Cho K. Nano Letters, 2002, 2(6), 647.
28 Lins F, Kahl C, Zarges J C, et al. Polymers, 2023, 15(7), 1800.
29 Whiteley C E, Kirkham M J, Edgar J H. Journal of Physics and Chemistry of Solids, 2013, 74(5), 673.
30 Saines P J, Barton P T, Jura M, et al. Materials Horizons, 2014, 1(3), 332.
31 Zhang H M, Lu C X, Wang F, et al. Ceramics International, 2018, 44(13), 16076.
32 Sokolov P S, Baranov A N, Solozhenko V L. Journal of Physics and Chemistry of Solids, 2023, 180(3), 111437.
33 Zhang K, Wang K, Chen J, et al. Additive Manufacturing, 2021, 47, 102338.
34 Chen J, Gao Q, Sanson A, et al. Nature Communications, 2017, 8, 1.
35 Wyrzykowski M, Lura P. Cement and Concrete Composites, 2013, 35(1), 49.
36 Cho S, Lee J, Shin S, et al. Journal of Materials Research and Technology, 2023, 25, 7241.
37 Oh B H, Ma C Il, Kwak J Y, et al. Journal of Korean Institute of Metals and Materials, 2022, 60(1), 68.
38 Dag S, Liu M, Jiang L, et al. In: Conference Record of the 2023 IEEE 73rd Electronic Components and Technology Conference. Orlando, 2023, pp. 342.
39 Wei K, Pei Y. Kexue Tongbao/Chinese Science Bulletin, 2017, 62(1), 47 (in Chinese).
韦凯, 裴永茂. 科学通报, 2017, 62(1), 47.
40 Wei K, Peng Y, Wen W, et al. Transactions ASME, 2017, 84(10), 1.
41 Chu K, Li Q, Sun Q, et al. Acta Materialia, 2024, 262, 119442.
42 Peng X L, Bargmann S. International Journal of Mechanical Sciences, 2021, 190, 106021.
43 Miller W, Smith C W, Mackenzie D S, et al. Journal of Materials Science, 2009, 44(20), 5441.
44 Knausz M, Oreski G, Schmidt M, et al. Polymer Testing, 2015, 44, 160.
45 Kang C, Zhang Z, Kusaka S, et al. Nature Materials, 2023, 22(5), 636.
46 Auckett J E, Barkhordarian A A, Ogilvie S H, et al. Nature Communications, 2018, 9(1), 1.
47 Bashir M A, Monteil V, Kanellopoulos V, et al. Macromolecular Chemistry and Physics, 2015, 216(21), 2129.
48 Han S S, Goddard W A. Journal of Physical Chemistry C, 2007, 111(42), 15185.
49 Xie G, Wang Z, Bao Y. Materials, 2020, 13(17), 3673.
50 Fujiwara H, Ono H, Nishimura S. International Journal of Hydrogen Energy, 2022, 47(7), 4725.
51 Guo J X, Lin L, Xiao Y T, et al. Wire and Cable, 2011( 5), 13 (in Chinese).
郭俭旭, 林磊, 肖云涛, 等. 电线电缆, 2011(5), 13.
52 Ren Y Y, Shi J J, Jia B, et al. Plastic Industry, 2022, 50(4), 128 (in Chinese).
任银银, 石建军, 贾彬, 等. 塑料工业, 2022, 50(4), 128.
53 Song J H. Research on the properties of cold and impact resistant polymer materials. Southwest Jiaotong University, China, 2016(in Chinese).
宋俊宏. 耐寒、耐冲击高分子材料性能研究. 硕士学位论文, 西南交通大学, 2016.
54 Sun Z X, Zhang X L, Zhou Z F, et al. Rubber Industry, 2021, 68(6), 471(in Chinese).
孙宗学, 张晓莲, 周志峰. 橡胶工业, 2021, 68(6), 471.
55 Chen Y M, Ting J M. Carbon, 2002, 40(3), 359.
56 Long Y, Zhang Y, Hu X, et al. Journal of Reinforced Plastics and Composites, 2023, 42(15-16), 828.
57 Kabashima S, Ozaki T. Advanced Composite Materials, 2000, 9(4), 387.
58 Rehman M M, Shaker K, Nawab Y. Journal of Thermal Analysis and Calorimetry, 2023, 148(13), 6003.
59 Ma T F, Li G Y, Guo Z M, et al. Materials Engineering, 2023, 51(12), 151 (in Chinese).
马腾飞, 李桂洋, 郭子民, 等. 材料工程, 2023, 51(12), 151.
60 Liu F. Preparation and electromagnetic shielding performance of composite materials based on expandable microspheres. Master's Thesis, Guilin University of Technology, China, 2023 (in Chinese).
刘芳. 基于可膨胀微球的复合材料制备与电磁屏蔽性能研究. 硕士学位论文, 桂林理工大学. 2023.
61 Yang W, Qiao X, Chen G, et al. Polymer Bulletin, 2023, 80(5), 5257.
62 Zhang D H, Li Y, Kamara G, et al. Applied Materials Today, 2023, 31, 101780.
63 Cao X, Jia D, Zhan S, et al. Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2022, 38(7), 60.
64 Holliday L, Robinson J. Journal of Materials Science, 1973, 8(3), 301.
65 Iwanaga H, Kunishige A, Takeuchi S. Journal of Materials Science, 2000, 35(10), 2451.
66 Saba N, Jawaid M. Journal of Industrial and Engineering Chemistry, 2018, 67, 1.
67 Ouyang G N, Xu L, Liu C M, et al. Aerospace Material Technology. 1998(4), 48 (in Chinese).
欧阳国恩, 许路, 刘成民, 等. 宇航材料工艺, 1988(4), 48.
68 Zhu X G, Qi Z N, Wu R J. Journal of Polymer Science, 1992(3), 345 (in Chinese).
朱晓光, 漆宗能, 吴仁洁. 高分子学报, 1992(3), 345.
69 Wang L Z. Engineering Plastic Application, 1994, 22(6), 33 (in Chinese).
王乐斋. 工程塑料应用, 1994, 22(6), 33.
70 Colón quintana J L, Slattery L, Pinkham J, et al. Materials, 2022, 15(8), 1.
71 Chen Z, Xu Z, Cui F, et al. Journal of the European Ceramic Society, 2022, 42(4), 1685.
72 Jawaid M, Awad S, Fouad H, et al. Journal of Natural Fibers, 2022, 19(15), 12182.
73 Ana C C T, Kaushik S. Neurogastroenterology and Motility, 2019, 106(8), 4852.
74 Ren L, Pashayi K, Fard H R, et al. Composites Part B:Engineering, 2014, 58, 228.
75 Wu H, Drzal L T. Materials Chemistry and Physics, 2014, 146(1-2), 26.
76 Mizuno M, Nakamura K, Konishi T, et al. Journal of Non-crystalline Solids, 2011, 357(2), 594.
77 Suzuki N, Kiba S, Yamauchi Y. Materials Letters, 2011, 65(3), 544.
78 Takenaka K, Ichigo M. Composites Science and Technology, 2014, 104, 47.
79 Ueberreiter K, Kanig G. Journal of Colloid Science, 1952, 7(6), 569.
80 Choy C L, Chen F C, Ong E L. Polymer, 1979, 20(10), 1191.
81 Broer D J, Mol g N. Polymer Engineering & Science, 1991, 31(9), 625.
82 Rimdusit S, Bangsen W, Kasemsiri P. Journal of Applied Polymer Science, 2011, 121(6), 3669.
83 Shen J, Li X, Li P, et al. Physical Chemistry Chemical Physics, 2023, 25(40), 27352.
84 Philipp M, Zimmer B, Ostermeyer M, et al. Thermochimica Acta, 2020, 686, 178410.
85 Das D, Jacobs T, Barbour L J. Nature Materials, 2010, 9(1), 36.
86 Jin E, Lee I S, Yang D C M, et al. Nature Communications, 2023, 14(1), 1.
87 Yao Z S, Guan H, Shiota Y, et al. Nature Communications, 2019, 10(1), 1.
88 Rath B B, Gallo G, Dinnebier R E, et al. Journal of the American Chemical Society, 2021, 143(4), 2088.
89 Bute I, Tarasovs S, Vidinejevs S, et al. International Journal of Advanced Manufacturing Technology, 2023, 124(7-8), 2739.
90 Liu Z, Liu C, Li Q, et al. Physical Chemistry Chemical Physics, 2017, 19(36), 24436.
91 Yamato M, Imai A, Kawakami H. Polymer, 2022, 259, 125339.
92 Zhou H L, Lin R B, He C T, et al. Nature Communications, 2013, 4, 1.
93 Zhou H L, Zhang Y B, Zhang J P, et al. Nature Communications, 2015, 6, 1.
94 Yi J, Zou G, Huang J, et al. Nature, 2023, 624(7991), 295.
95 Zhang Y, Postiglione W M, Xie R, et al. Nature Communications, 2023, 14(1), 1.
96 Shen X, Viney C, Johnson E R, et al. Nature Chemistry, 2013, 5(12), 1035.
97 Rothe F, Dér A, Kabala P, et al. Procedia CIRP, 2020, 85, 12.
98 Zhang Q, Sun Y. International Journal of Mechanical Sciences, DOI:10.1016/j.ijmecsci.2023.108692.
99 Chen S, Chen J, Zhang X, et al. Light: Science and Applications, 2020, 9(1), 1.
100 Baschek G, Hartwig G. Cryogenics, 1998, 38(1), 99.
101 Xu H, Farag A, Pasini D. Acta Materialia, 2017, 134, 155.
102 Xiao X, Chen J, Wang K, et al. ACS Applied Materials and Interfaces, 2023, 15(40), 47434.
103 Takezawa A, Kobashi M. Composites Part B: Engineering, 2017, 131, 21.
104 Tian J, Yang J, Zhao Y. International Journal of Mechanical Sciences, 2023, 256, 108488.
105 Han Z, Xiao X, Chen J, et al. ACS Applied Materials and Interfaces, 2022, 4, 50068.
106 Guo X, Ni X, Li J, et al. Advanced Materials, 2021, 33(3), 1.
107 Xu W, Xiao X, Chen J, et al. Thin-Walled Structures, 2022, 174, 109147.
108 Fu M, Huang J, Zheng B, et al. Smart Materials and Structures, 2020, 29(8), 085034.
109 Yang H, D'ambrosio N, Liu P, et al. Materials Today, 2023, 66, 36.
110 Lim T C. Composite Structures, 2019, 226, 111256.
111 Wang G, Zhao J, Mark L H, et al. Chemical Engineering Journal, 2017, 325, 632.
112 Lim T C. Materials Research Express, 2019, 6(11), 115804.
113 Lim T C. Advanced Composites and Hybrid Materials, 2021, 4(4), 966.
114 Lim T C. SN Applied Sciences, 2020, 2(5), 1.
115 Zhang Y, Pan Y, Han D, et al. Composite Structures, 2023, 323, 117474.
116 Pye J E, Roth C B. Macromolecules, 2013, 46(23), 9455.
117 Silberschmidt V V, Matveenko V V. In: Mechanics of advanced materials, Hou X, Silberschmidt V V, ed, Springer, UK, 2015, pp, 155.
118 Lee W, Kang D Y, Song J, et al. Scientific Reports, 2016, 6, 1.
119 Chen D, Zheng X. Scientific Reports, 2018, 8(1), 1.
120 Mahmoodi M J, Hassanzadeh-Aghdam M K, Ansari R. Journal of Intelligent Material Systems and Structures, 2019, 30(1), 32.
[1] 李翠利, 申纯宇, 杨英, 王兴龙, 汤建伟, 化全县, 刘咏, 刘鹏飞, 丁俊祥, 申博, 王保明. 离子液体在纳米材料制备中的应用进展[J]. 材料导报, 2025, 39(7): 24020066-9.
[2] 陈易诚, 涂建勇, 李鑫, 范晓孟. 雷达/红外兼容隐身材料设计原理及研究进展[J]. 材料导报, 2025, 39(6): 23120256-10.
[3] 李刊, 魏智强, 路承功, 蒲育. 纳米SiO2改性聚合物水泥基复合材料孔隙结构演变特征及强度预测[J]. 材料导报, 2025, 39(6): 24070202-10.
[4] 任凯, 张祖华, 邓毓琳, 胡捷, 史才军. 荷载-氯盐侵蚀耦合作用下矿渣基地质聚合物混凝土梁的受弯性能[J]. 材料导报, 2025, 39(3): 24030079-7.
[5] 蒋曜年, 刘欢, 钟镇涛, 何泽乾, 毛卫国, 戴翠英, 张有为, 刘平桂. SiCN@Fe复合吸波涂层高温原位拉伸测试分析[J]. 材料导报, 2025, 39(3): 23050156-5.
[6] 李东翰, 宁舒蕊, 于璐, 廖明义, 张梦霞, 尤诗博, 方庆红. 稀土催化还原体系用于遥爪型低分子量含氟聚合物端基官能化的基础研究[J]. 材料导报, 2025, 39(3): 23100154-9.
[7] 王丕, 宋琛, 董东东, 曾德长, 刘太楷, 文魁, 毛杰, 刘敏. 多孔Fe24Cr金属支撑体厚度对SOFC性能的影响[J]. 材料导报, 2025, 39(1): 23110193-7.
[8] 唐宁, 王延军, 赵明宇, 孙艺涵, 王晴. 偏铝酸钠对单组分地聚水泥的性能调控及水化机理[J]. 材料导报, 2024, 38(8): 22060304-6.
[9] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[10] 宋学锋, 王楠. 原位合成LDHs@地聚物复合材料的矿物组成及除磷效果[J]. 材料导报, 2024, 38(8): 22110080-6.
[11] 钮政, 罗希, 徐能能, 陈刚, 乔锦丽. 聚乙烯醇基凝胶电解质的制备及在储能器件中的应用[J]. 材料导报, 2024, 38(8): 23040146-11.
[12] 刘守一, 望宇皓, 刘莉莉, 欧阳云祥, 李娜, 胡朝霞, 陈守文. 石墨相氮化碳在聚合物电解质膜中的研究进展[J]. 材料导报, 2024, 38(6): 23030250-7.
[13] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[14] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[15] 张白, 彭晖, 杨致远. 海水干湿循环作用下地聚物基珊瑚骨料混凝土力学性能的研究[J]. 材料导报, 2024, 38(23): 23090081-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed