Please wait a minute...
材料导报  2025, Vol. 39 Issue (7): 23120043-11    https://doi.org/10.11896/cldb.23120043
  无机非金属及其复合材料 |
污水管道混凝土微生物腐蚀机理、影响因素和模拟试验方法综述
李克亮*, 杜建, 陈爱玖, 韩小燕
华北水利水电大学土木与交通学院, 郑州 450045
Review of Mechanisms, Influencing Factors, and Simulation Test Methods of Microbiologically Influenced Corrosion of Concrete in Sewage Pipelines
LI Keliang*, DU Jian, CHEN Aijiu, HAN Xiaoyan
School of Civil Engineering and Transportation, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
下载:  全 文 ( PDF ) ( 13310KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 微生物腐蚀是全球下水道混凝土结构的巨大挑战之一。本文详细综述了混凝土微生物腐蚀(MICC)的三个阶段(非生物中和作用、微生物定植和混凝土腐蚀破坏),分析了污水组成、环境因素、耦合腐蚀作用、生物因素和管道因素等影响因素对MICC速率的影响,并强调了各因素之间的相互作用;论述了矿物硫酸试验、生物硫酸试验、强化污水腐蚀试验、实验室模拟试验、全尺寸试验和原位暴露试验等多种MICC模拟试验方法,并对比各种试验方法的主要优缺点。最后归纳了目前MICC研究中存在的关键问题,如生物膜作用和微生物的协同作用、试验标准和评价标准、钢筋的加速腐蚀作用等,指出未来研究方向,为地下污水管道MICC研究提供思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李克亮
杜建
陈爱玖
韩小燕
关键词:  污水  管道  混凝土  微生物  腐蚀  模拟试验    
Abstract: Microbiologically influenced corrosion poses a significant challenge to concrete sewer structures globally. This article provides a detailed explanation of the three stages of microbiologically influenced corrosion of concrete (MICC), i.e., non-biological neutralization, microbial colonization, and concrete corrosion and deterioration. Factors influencing the corrosion rate of MICC, such as sewage composition, environmental factors, coupled corrosion effect, biological factors, and pipeline factors, are reviewed, emphasizing the interplay among these factors. Various MICC testing methods, including mineral sulfuric acid test, biological sulfuric acid test, enhanced wastewater corrosion test, laboratory simulation test, full-scale test, and in-situ exposure test,are discussed. The major advantages and disadvantages of these assessment methods are outlined. Finally, the key issues in current MICC research are summarized, such as the synergistic effect of biofilm and microorganisms, experimental and evaluation standards, and the acceleration effect of steel reinforcement. Future research directions are pointed out, providing ideas for the study of microbial corrosion of concrete in underground sewage pipelines.
Key words:  sewage    pipeline    concrete    microorganism    corrosion    simulation test
出版日期:  2025-04-10      发布日期:  2025-04-10
ZTFLH:  TU528.1  
通讯作者:  *李克亮,博士,华北水利水电大学教授,硕士研究生导师。主要从事先进土木工程材料、低碳生态建筑材料、固体废弃物资源化利用的研究工作。likeliang@ncwu.edu.cn   
引用本文:    
李克亮, 杜建, 陈爱玖, 韩小燕. 污水管道混凝土微生物腐蚀机理、影响因素和模拟试验方法综述[J]. 材料导报, 2025, 39(7): 23120043-11.
LI Keliang, DU Jian, CHEN Aijiu, HAN Xiaoyan. Review of Mechanisms, Influencing Factors, and Simulation Test Methods of Microbiologically Influenced Corrosion of Concrete in Sewage Pipelines. Materials Reports, 2025, 39(7): 23120043-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23120043  或          https://www.mater-rep.com/CN/Y2025/V39/I7/23120043
1 Liu B S, Tong Y, Gao Y X, et al. Corrosion & Protection, 2022, 43(10), 7 (in Chinese).
刘本山, 佟瑶, 高迎鑫, 等. 腐蚀与防护, 2022, 43(10), 7.
2 Wang J, Liu G H, Wang J, et al. Environmental Science and Pollution Research, 2021, 28(32), 43035
3 Jiang G, Sun X, Keller J, et al. Water Research, 2015, 80, 30.
4 Zhou J, Lin Z C, Xu M F, et al. Bulletin of the Chinese Ceramic Society, 2023, 42(5), 1529 (in Chinese).
周健, 林志超, 徐名凤, 等. 硅酸盐通报, 2023, 42(5), 1529.
5 Wu M, Wang T, Wu K, et al. Construction and Building Materials, 2020, 239, 117813.
6 Ding L, Weiss W J, Blatchley III E R. Journal of Environmental Engineering, 2017, 143(6), 04017014.
7 Huber B, Hilbig H, Drewes J E, et al. Cement and Concrete Research, 2017, 94, 36.
8 Zhang J B, Wang H C, Shao Y T, et al. Chemosphere, 2022, 291, 132875.
9 Alkhateeb S, Riccioli F, Morales F L, et al. Sensors, 2023, 23(1), 161.
10 Tian L, Han C Y, Zhang J Y, et al. Journal of the Air & Waste Management Association, 2021, 71(10), 1303.
11 Kong L J, Liu C, Cao M F, et al. Construction and Building Materials, 2018, 164, 44.
12 Fytianos G, Tziolas E, Papastergiadis E, et al. Sustainability, 2020, 12(11), 4578.
13 Roghanian N, Banthia N. Cement & Concrete Composites, 2019, 100, 99.
14 Zhao W J, Fan Z R, Li X, et al. Materials, 2022, 15(4), 1527.
15 Joseph A P, Keller J, Bustamante H, et al. Water Research, 2012, 46(13), 4235.
16 Merachtsaki D, Fytianos G, Papastergiadis E, et al. Materials, 2020, 13(22), 5291.
17 Chowdhury R. Influence of supplementary cementitious material (SCM) on concrete durability (drying shrinkage and alkali-silica reactivity). Master's Thesis, Arkansas State University, USA, 2021.
18 Li Q, Li X Y, Yang K, et al. Cement & Concrete Composites, 2021, 116, 103893.
19 Taheri S, Ams M, Bustamante H, et al. MATEC Web of Conferences, 2018, 199, 06010.
20 Li H B, Yang C T, Zhou E Z, et al. Journal of Materials Science & Technology, 2017, 33(12), 1596.
21 Olmstead W M, Hamlin H. Engineering News and American Railway Journal, 1900, 33(12), 137.
22 Parker C. Australian Journal of Experimental Biology and Medical Science, 1945, 23(3), 14.
23 House M W. Using biological and physico-chemical test methods to assess the role of concrete mixture design in resistance to microbially induced corrosion. Master's Thesis, Arkansas State University, USA, 2013.
24 Merachtsaki D, Tsardaka E, Anastasiou E, et al. Construction and Building Materials, 2021, 312, 125441.
25 Jiang G, Zhou M, Chiu T H, et al. Environmental Science & Technology, 2016, 50(15), 8084.
26 Merachtsaki D, Tsardaka E, Anastasiou E, et al. Materials, 2021, 14(17), 4897.
27 Nnadi E O, Lizarazo-Marriaga J. Journal of Materials in Civil Engineering, 2013, 25(9), 1353.
28 Sabour M, Dezvareh G, Bazzazzadeh R. Construction and Building Materials, 2019, 199, 40.
29 Domna M, Georgios F, Efthimios P, et al. Materials, 2020, 13(22), 5291.
30 Wu L, Hu C, Liu W V. Sustainability, 2018, 10(2), 517.
31 Noeiaghaei T, Mukherjee A, Dhami N, et al. Construction and Building Materials, 2017, 149, 575.
32 Li W K, Zheng T L, Ma Y Q, et al. Science of the Total Environment, 2019, 695, 133815.
33 Li X, Kappler U, Jiang G, et al. Frontiers in Microbiology, 2017, 8, 683.
34 He J, Yang C T, Li Z. Journal of Chinese Society for Corrosion and Protection, 2021, 41(2), 151 (in Chinese).
何静, 杨纯田, 李中. 中国腐蚀与防护学报, 2021, 41(2), 151.
35 Gu L, Visintin P, Bennett T. Cement & Concrete Composites, 2018, 87, 187.
36 Gutberlet T, Hilbig H, Beddoe R E. Cement and Concrete Research, 2015, 74, 35.
37 Kang X J, Ye H L. Cement and Concrete Research, 2022, 158, 106844.
38 Wang T, Wu K, Kan L L, et al. Construction and Building Materials, 2020, 247, 118539.
39 Xiao L P, Zhang L, Li Y, et al. Journal of Water Resources and Water Engineering, 2011, 22(1), 45 (in Chinese).
肖利萍, 张镭, 李月, 等. 水资源与水工程学报, 2011, 22(1), 45.
40 Kong L J, Han M D, Fu S F. Journal of Materials in Civil Engineering, 2021, 33(5), 04021082.
41 Huang C H, Chen K S, Wang H K. Aerosol and Air Quality Research, 2012, 12(6), 1315.
42 Decottignies V, Huyard A, Kelly R F, et al. Water Science and Technology, 2013, 68(4), 839.
43 Flemming H, Wingender J, Szewzyk U, et al. Nature Reviews Microbiology, 2016, 14(9), 563.
44 Cao R S, Tian J L. Bulletin of the Chinese Ceramic Society, 2013, 32(12), 2632 (in Chinese).
曹瑞实, 田金亮. 硅酸盐通报, 2013, 32(12), 2632.
45 Jakub S, Janusz K. Procedia Engineering, 2016, 153, 698.
46 Wallace T, Gibbons D, Dwyer M, et al. Journal of Environmental Ma-nagement, 2017, 187, 424.
47 Rajeev R, Jie L, Saman D S, et al. Resources Conservation and Recycling, 2021, 164, 105166.
48 Xia H, Reyes F L, Leming M L. Water Research, 2013, 47(13), 4451.
49 Sayantan R, Suman S, Hasanur Rahaman S, et al. Surface & Coatings Technology, 2019, 377, 124849.
50 Wu L P, Hu C S, Liu W V. Sustainability, 2018, 10(2), 517.
51 Mandal A, Dutta A, Das R, et al. Marine Pollution Bulletin, 2021, 170, 112626.
52 Jiang G M, Zhou M, Chiu T H, et al. Environmental Science & Technology, 2016, 50(15), 8084.
53 Jiang G, Keller J, Bond P L. Water Research, 2014, 65, 157.
54 Jiang G, Sun J, Sharma K R, et al. Current Opinion in Biotechnology, 2015, 33, 192.
55 Kaushal V, Najafi M, Love J, et al. Journal of Pipeline Systems Engineering and Practice, 2020, 11(1), 03119002.
56 Tang C Y, Xiao J, Chen F, et al. Journal of Chinese Society for Corrosion and Protection, 2007(6), 373 (in Chinese).
唐咸燕, 肖佳, 陈烽, 等. 中国腐蚀与防护学报, 2007(6), 373.
57 Liu Y C, Dong Q, Shi H C. Applied Microbiology and Biotechnology, 2015, 99(18), 7723.
58 Yousefi A, Allahverdi A, Hejazi P. International Biodeterioration & Biodegradation, 2014, 86, 317.
59 Jiang G M, Keller J, Bond P L. Water Research, 2014, 65, 157.
60 Wells T, Melchers R E. Cement and Concrete Research, 2015, 77, 82.
61 Sun X Y, Jiang G M, Bond P L, et al. Water Research, 2015, 81, 84.
62 Nielsen A H, Hvitved-Jacobsen T, Vollertsen J. Water Environment Research, 2012, 84(3), 265.
63 Hewayde E H. Investigation on degradation of concrete sewer pipes by sulfuric acid attack. Master's Thesis, A Purdue University, USA, 2005.
64 Fytianos G, Tsikrikis A, Anagnostopoulos C A, et al. Water, 2021, 13(3), 261.
65 Hua T, Li S N, Li F S, et al. Chemical Journal of Chinese Universities-Chinese, 2019, 40(9), 1964.
66 Kong L J, Lu H R, Fu S F, et al. Construction and Building Materials, 2020, 272, 121663.
67 Pagaling E, Yang K, Yan T. Journal of Applied Microbiology, 2014, 117(1), 50.
68 Rong H, Yu C L, Ma G W, et al. Journal of the Chinese Ceramic Society, 2021, 49(5), 988 (in Chinese).
荣辉, 於成龙, 马国伟, 等. 硅酸盐学报, 2021, 49(5), 988.
69 Panyushkina A, Muravyov M. Minerals, 2023, 13(2), 255.
70 Dopson M, Johnson D B. Environmental Microbiology, 2012, 14(10), 2620.
71 Yang X C. Optimal design of concrete corrosion preventionunder the microbial action of sewage. Master's Thesis, Shijiazhuang Tiedao University, China, 2020 (in Chinese).
杨雪超. 污水微生物作用下的混凝土腐蚀防治优化设计研究. 硕士学位论文, 石家庄铁道大学, 2020.
72 Zhu H T, Fan X Q, Zhang Q M, et al. Journal of North China Institute of Water Resources and Hydropower, 2013, 34(1), 11 (in Chinese).
朱海堂, 范向前, 张启明, 等. 华北水利水电学院学报, 2013, 34(1), 11.
73 Peng Z. Model of chloride penetration concrete under the drying and wetting cycles coupled with load. Master's Thesis, Zhejiang University, China, 2010 (in Chinese).
彭智. 干湿循环与荷载耦合作用下氯离子侵蚀混凝土模型研究. 硕士学位论文, 浙江大学, 2010.
74 Yue P J, Wu X H. China Water Transport, 2008, 10(8), 223 (in Chinese).
岳鹏君, 吴相豪. 中国水运, 2010, 10(8), 223.
75 Ma L K. Mechanism and evaluation method of salt crystallization attack on concrete. Ph. D. Thesis, Central South University, China, 2009 (in Chinese).
马昆林. 混凝土盐结晶侵蚀机理与评价方法. 博士学位论文, 中南大学, 2009.
76 Zhou X Z, Song P T, Ni G H. Concrete, 2008, 8(4), 100 (in Chinese).
周学章, 宋佩娣, 倪桂华. 混凝土, 2008, 8(4), 100.
77 Alexander M G, Fourie C. Materials and Structures, 2011, 44(1), 313.
78 Xie Y D, Lin X J, Pan W J, et al. Construction and Building Materials, 2018, 188, 9.
79 Aboulela A, Lavigne M P, Pons T, et al. Science of the Total Environment, 2022, 850, 255.
80 Girardi F, Di Maggio R. Cement & Concrete Composites, 2011, 33(2), 276.
81 Huber B, Hilbig H, Mago M M, et al. Cement and Concrete Research, 2016, 87, 14.
82 Gao L X, Ding N X, Yao Y, et al. Materials Reports, 2018, 32(3), 503 (in Chinese).
高礼雄, 丁汝茜, 姚燕, 等. 材料导报, 2018, 32(3), 503.
83 Sothornchaiwit K, Dokduea W, Tangchirapat W, et al. Sustainability, 2022, 14(5), 2652.
84 Sate V, Sathonsaowaphak A, Chindaprasirt P. Cement & Concrete Composites, 2012, 34(5), 700.
85 Erbektas A R, Isgor O B, Weiss W J. ACI Materials Journal, 2020, 117(1), 255.
86 Grengg C, Mittermayr F, Ukrainczyk N, et al. Water Research, 2018, 134, 341.
87 Provis J L, Palomo A, Shi C. Cement and Concrete Research, 2015, 78, 110.
88 Meek A H, Elchalakani M, Beckett C T S, et al. Construction and Building Materials, 2021, 277, 122303.
89 Nochaiya T, Suriwong T, Julphunthong P. Case Studies in Construction Materials, 2022, 16, 0101.
90 Kong L J, Liang Z G, Lu H, et al. Materials Reports, 2023, 37(7), 78 (in Chinese).
孔丽娟, 梁增蕴, 鹿桓, 等. 材料导报, 2023, 37(7), 78.
91 Wells T, Melchers R E. Cement and Concrete Research, 2014, 61, 1.
92 Jia R, Unsal T, Xu D, et al. International Biodeterioration & Biodegradation, 2019, 137, 42.
93 Li Y C, Xu D K, Chen C F, et al. Journal of Materials Science & Technology, 2018, 34(10), 1713.
94 Usher K M, Kaksonen A H, Cole I, et al. International Biodeterioration & Biodegradation, 2014, 93, 84.
95 Alani A M, Faramarzi A. Applied Soft Computing, 2014, 24, 985.
96 Zhang X W, Han J Y, Gao Z H, et al. China Concrete and Cement Pro-ducts, 2003(5), 8 (in Chinese).
张小伟, 韩静云, 郜志海, 等. 混凝土与水泥制品, 2003(5), 8.
97 Zherebyateva T V, Lebedeva E V, Karavako G I. Geomicrobiology Journal, 1991, 33(5), 119.
98 Zhang X W, Han J Y, Tian Y J, et al. Corrosion Science and Protection Technology, 2003(4), 234 (in Chinese).
张小伟, 韩静云, 田永静, 等. 腐蚀科学与防护技术, 2003(4), 234.
99 Wen B L. Research on concrete corrosion and durability in urban sewage environment. Ph. D. Thesis, Tianjin University, China, 2005 (in Chinese).
闻宝联. 城市污水环境下混凝土腐蚀及耐久性研究. 博士学位论文, 天津大学, 2005.
100 Kong L, Han M, Fu S. Journal of Materials in Civil Engineering, 2021, 33(5), 04021082.
101 W. Sand. Technology, 1984, 5(5), 517.
102 Sand W. ApplEnviron Microbiol, 1987, 53(5), 1645.
103 Schmidt M, Hormann K, Hofmann F J, et al. Concrete Precasting Plant and Technology, 1997, 4(5), 64.
104 Gutierrez-Padilla, Bielefeldt A, Ovtchinnikov S. Cement and Concrete Research, 2010, 40, 293.
105 Tadahiro M, Tsuguhiro N. Printed in Great Britain, 2021, 26(1), 29.
106 Vollertsen J, Nielsen A H, Jensen H S, et al. Science of the Total Environment, 2008, 394(5), 162.
107 Jensen H. Chemistry and Environmental Engineering, 2009, 33(5), 16170.
108 Bao X, Research on the deterioration behavior and prediction of concrete in sewage environment. Master's Thesis, Shijiazhuang Tiedao University, China, 2016 (in Chinese).
包昕. 污水环境下混凝土的劣化行为及预测研究. 硕士学位论文, 石家庄铁道大学, 2016.
109 Bao X, Kong L J, Song L T, et al. Concrete, 2015, 10(1), 17 (in Chinese).
包昕, 孔丽娟, 宋路涛, 等. 混凝土, 2015, 10(1), 17.
[1] 王艳, 常天风, 杨子凡, 李伊岚. 超高性能混凝土-普通混凝土界面粘结性能研究[J]. 材料导报, 2025, 39(7): 24020129-6.
[2] 杨军兆, 张戎令, 薛彦瑾, 王小平, 窦晓峥, 宋毅. 基于分形维数的硫酸盐环境下混凝土抗蚀系数及微观机理研究[J]. 材料导报, 2025, 39(7): 24020033-7.
[3] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[4] 姜彦杰, 刘浩天, 刘海峰, 车佳玲, 杨维武. 硫酸盐冻融后沙漠砂混凝土单轴受压力学性能试验研究[J]. 材料导报, 2025, 39(7): 23110222-11.
[5] 黄晗冰, 王培, 乔石, 马如龙, 郝振华, 舒永春, 何季麟. Cu-0.9Be-1.5Ni-0.04Y合金的摩擦磨损与电化学腐蚀性能研究[J]. 材料导报, 2025, 39(7): 24010241-8.
[6] 叶利亚, 陈宏飞, 杨光, 高彦峰. V2O5对β-(Ni,Pt)Al涂层热腐蚀抗性的影响[J]. 材料导报, 2025, 39(7): 24030041-4.
[7] 汤云, 习敏娟, 王许辉, 邓乐淳, 陈强. 吸收主导型Ni/Ni@Ag/EP电磁屏蔽涂层的制备及性能[J]. 材料导报, 2025, 39(6): 24020060-7.
[8] 杜刚, 李亮, 王子晨, 吴俊, 杜修力. 碳纤维混凝土高温冷却后动态压缩性能试验研究[J]. 材料导报, 2025, 39(6): 24010268-6.
[9] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[10] 易忠来, 纪文骁, 李化建, 杨志强, 温浩, 王振. 混凝土稳健性评价方法及提升措施研究进展[J]. 材料导报, 2025, 39(6): 24020022-12.
[11] 王耀, 郑新颜, 黄伟, 吴应雄, 黄雅莹, 张恒春, 张峰. 超高性能混凝土-花岗岩石材界面的抗剪性能研究[J]. 材料导报, 2025, 39(6): 24010107-10.
[12] 潘杜, 牛荻涛, 罗大明. 海水海砂混凝土中低合金钢筋钝化膜结构及厚度预测模型[J]. 材料导报, 2025, 39(6): 23120173-8.
[13] 谢浩民, 李光明, 胡凌越, 毛飞雄, 宫克. 载荷和电位对Ti-6Al-3Nb-2Zr-1Mo合金在海水中腐蚀磨损行为的影响[J]. 材料导报, 2025, 39(6): 24010227-11.
[14] 王森巍, 王丽, 王明庆, 佘加, 易嘉琰, 陈先华, 潘复生. Mg-xSc(x=0.5,1.0,3.0,5.0)生物医用合金组织与性能研究[J]. 材料导报, 2025, 39(5): 24090019-8.
[15] 王鑫瑶, 韦永韬, 吴静, 王显彬, 杨文超, 湛永钟. XPS在新型齿科医用材料研究中的应用[J]. 材料导报, 2025, 39(5): 24100162-11.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed