Please wait a minute...
材料导报  2025, Vol. 39 Issue (7): 24030041-4    https://doi.org/10.11896/cldb.24030041
  金属与金属基复合材料 |
V2O5对β-(Ni,Pt)Al涂层热腐蚀抗性的影响
叶利亚1,2, 陈宏飞2, 杨光2, 高彦峰2,*
1 上海航天科工电器研究院有限公司, 上海 200331
2 上海大学材料科学与工程学院, 上海 200444
Effect of V2O5 on the Hot Corrosion Resistance of β-(Ni, Pt)Al Coating
YE Liya1,2, CHEN Hongfei2, YANG Guang2, GAO Yanfeng2,*
1 Shanghai Space Appliance Co.,Ltd., Shanghai 200331, China
2 School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
下载:  全 文 ( PDF ) ( 11720KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 β-(Ni,Pt)Al相的Pt-Al涂层具有优异的抗氧化性能,常被用于航空发动机热端部件表面热防护。燃料燃烧产生的腐蚀产物复杂,会在部件表面形成复杂物相的熔盐沉积,因此明晰其腐蚀机制对提高β-(Ni,Pt)Al涂层的综合性能具有重要意义。除了针对单一组分Na2SO4熔盐热腐蚀行为的研究外,β-(Ni,Pt)Al涂层在Na2SO4+V2O5混合盐沉积下的腐蚀机制尚不明确。本工作通过在单相β-(Ni,Pt)Al涂层样品上分别涂覆Na2SO4和Na2SO4+V2O5的方式,对比研究了两种熔盐从950 ℃到室温循环条件下对涂层的腐蚀行为。通过对涂层腐蚀动力学、腐蚀产物物相演变和涂层形貌演变的分析发现:Na2SO4+V2O5混合盐的腐蚀表现出更大的氧化增重和更深的腐蚀深度。相比于单一Na2SO4腐蚀,V2O5的加入导致起始氧化膜发生酸性熔融,使其失去保护作用,并加快Pt从β-(Ni,Pt)Al相中析出,使涂层氧化抗性恶化。V2O5通过促使Na2SO4释放更多的SO3来提高腐蚀界面处的硫化反应速率。本工作揭示了V2O5在熔盐热腐蚀中的作用机制,对如何提高β-(Ni,Pt)Al涂层的热腐蚀抗性具有重要指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
叶利亚
陈宏飞
杨光
高彦峰
关键词:  Pt-Al涂层  硫酸钠  五氧化二钒  热腐蚀    
Abstract: The β-(Ni, Pt)Al coating has excellent oxidation resistance and is used for thermal protection of hot section components in advanced gas turbine engine during service. The fuel combustion products are complex and can form molten salt deposits on the surface of components. Clarifying its corrosion mechanism is of great significance for improving the comprehensive performance of β-(Ni, Pt)Al coatings. Except for the research on the hot corrosion behavior of single component Na2SO4 molten salt, the corrosion mechanism of β-(Ni, Pt)Al coating under the deposition of Na2SO4+V2O5 mixed salt is still unclear. This work prepared single-phase β-(Ni, Pt)Al coatings deposited by Na2SO4 and Na2SO4+V2O5, respectively, and compared their corrosion behaviors under thermal cycles from 950 ℃ to room temperature. Through analysis of hot corrosion kinetics, phase evolution of corrosion products, and corrosion morphology evolution, it was found that the corrosion of Na2SO4+V2O5 mixed salt exhibited greater oxidation weight gain and deeper corrosion depth. Compared to single Na2SO4 corrosion, the V2O5 leads to acidic melting of the initial oxide film, causing it to lose its protective effect. V2O5 also accelerated the precipitation of Pt from the β-(Ni, Pt)Al phase, which deteriorated the oxidation resistance of the coating. This work reveals the mechanism of V2O5 accelerating hot corrosion, which has important guiding significance for improving the hot corrosion resistance of β-(Ni, Pt)Al coatings.
Key words:  Pt-Al coating    Na2SO4    V2O5    hot corrosion
出版日期:  2025-04-10      发布日期:  2025-04-10
ZTFLH:  TG171  
基金资助: 国家自然科学基金(52072232)
通讯作者:  *高彦峰,博士,研究员,博士研究生导师。主要研究领域包括光热调制材料、多频谱隐身伪装材料、特种无机高分子复合材料等。yfgao@shu.edu.cn   
作者简介:  叶利亚,上海大学材料科学与工程学院博士后,主要研究领域为高温涂层和电子陶瓷。
引用本文:    
叶利亚, 陈宏飞, 杨光, 高彦峰. V2O5对β-(Ni,Pt)Al涂层热腐蚀抗性的影响[J]. 材料导报, 2025, 39(7): 24030041-4.
YE Liya, CHEN Hongfei, YANG Guang, GAO Yanfeng. Effect of V2O5 on the Hot Corrosion Resistance of β-(Ni, Pt)Al Coating. Materials Reports, 2025, 39(7): 24030041-4.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030041  或          https://www.mater-rep.com/CN/Y2025/V39/I7/24030041
1 Gheno T, Gleeson B. Oxidation of Metals, 2015, 84(5), 1.
2 Pollock T M, Lipkin D M, Hemker K J, et al. MRS Bulletin, 2012, 37(10), 923.
3 Tawancy H M. Oxidation of Metals, 2014, 81(1), 237.
4 Xu Z, Wang Z, Huang G, et al. Journal of Alloys and Compounds, 2015, 637, 226.
5 Tolpygo V K, Clarke D R. Surface & Coatings Technology, 2009, 203(20), 3278.
6 Deodeshmukh V, Gleeson B. Oxidation of Metals, 2011, 76(1), 43.
7 Task M N, Gleeson B, Pettit F S, et al. Oxidation of Metals, 2013, 80(5), 541.
8 Saegusa F, Shores D A. Journal of Materials for Energy Systems, 1982, 4(1), 16.
9 Barbooti M M, Al-Madfai S H, Nassouri H J, et al. Thermochimica Acta, 1988, 126, 43.
10 Das D K. Progress in Materials Science, 2013, 58(2), 151.
11 Shirvani K, Rashidghamat A. Oxidation of Metals, 2016, 85(1), 75.
12 Mannava V, Rao A S, Paulose N, et al. Corrosion Science, 2016, 105, 109.
13 Rahmel A. Materials & Corrosion, 1988, 39(7), 354.
14 Stringer J. Annual Review of Materials Research, 1977, 7(1), 477.
15 Rapp R A. Corrosion Science, 2002, 44, 209.
16 Ye L Y, Chen H F, Yang G, et al. International Journal of Materials Research, 2017, 109(1), 3.
17 Dryepondt S, Porter J R, Clarke D R, et al. Acta Materialia, 2009, 57(6), 1717.
18 Clarke D R, Oechsner M, Padture N P, et al. MRS Bulletin, 2012, 37(10), 891.
19 Chen Y, Zhao X, Bai M, et al. Acta Materialia, 2015, 86, 319.
20 Birks N, Meier G H, Pettit F S. Introduction to the high temperature oxidation of metals 2nd Ed, Cambridge University Press, UK, 2006, pp. 177.
21 Ardelean H, Seyeux A, Zanna S, et al. Corrosion Science, 2013, 73(2), 196.
22 Peng X, Jiang S M, Sun X D, et al. Acta Metallurgica Sinica, 2016, 52(5), 625 (in Chinese).
彭新, 姜肃猛, 孙旭东, 等. 金属学报, 2016, 52(5), 625.
23 Marzena M K, Elzbieta G. Corrosion Science, 2017, 115, 18.
24 Li M J, Sun X F, Guan H R, et al. Acta Metallurgica Sinica, 2004, 40(7), 773 (in Chinese).
李猛进, 孙晓峰, 管恒荣, 等. 金属学报, 2004, 40(7), 773.
25 Singh H, Puri D, Prakash S. Reviews on Advanced Materials Science, 2007, 16, 27.
[1] 丁亚荣, 李灿华, 章蓝月, 李家茂, 何川, 李明晖, 朱伟长, 韦书贤. 硫化纳米零价铁复合材料对Cu(Ⅱ)去除性能的研究[J]. 材料导报, 2025, 39(2): 23070123-8.
[2] 杜金晶, 孙晔, 朱军, 李倩, 王斌, 刘景田, 孟晓荣. 五氧化二钒薄膜材料制备方法研究进展[J]. 材料导报, 2024, 38(5): 22100297-9.
[3] 赵荣, 韩子夜, 吴飞翔, 刘太奇, 李谭秋. 基于十水硫酸钠的个体防护材料的制备及性能[J]. 材料导报, 2024, 38(3): 22090074-5.
[4] 王玉锋, 付前刚, 杨俊, 张华, 杨岩. 热障涂层对DD6单晶燃气热腐蚀及力学性能的影响[J]. 材料导报, 2024, 38(18): 23070037-6.
[5] 安凌云, 常成功, 康迪菘, 王钊, 孟雷超, 彭建洪. 镁合金微弧氧化膜在三种饱和盐溶液中的耐蚀性研究[J]. 材料导报, 2023, 37(7): 21070250-10.
[6] 姚宏伟, 卢一平, 曹志强, 王同敏, 李廷举. FCC/L12共格高熵高温合金的研究进展[J]. 材料导报, 2020, 34(17): 17041-17046.
[7] 李 燕,杨旭光,孙道胜,王爱国,刘开伟. 弱碱环境下硅灰复合硅酸盐胶凝材料体系硫酸盐侵蚀产物[J]. 《材料导报》期刊社, 2017, 31(24): 26-29.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed