Abstract: The detection of hyperspectral signals remains particularly challenging in the field of camouflage technology. Camouflage materials with fine reflectance spectra of plant leaves are of paramount importance for the development of camouflage engineering. In this work, a multi-layer structured hyperspectral camouflage material comprising visible light absorption-transmission layer, near infrared absorption-transmission layer, reflection-regulating layer, and supporting layer was conceptually proposed for the simulation of green vegetation. The incident light could be reabsorbed in the absorption-transmission layer thank to the introduction of reflection-regulating layer, thus realizing the modulation of reflectance spectra of camouflage materials. The prepared camouflage materials exhibited reflectance similar to green vegetation within 400—2 500 nm wavelength scope. The reflectance plots overlapped satisfactorily with those of leaves of Euonymus, Winter-sweet, and Sophora japonica, and the correlation coefficients could be as high as 0.956 0, 0.936 4, and 0.936 3, respectively. The camouflage material presents tunable reflectance spectra with great resemblance to plants. Moreover, the low crystalline hydrate content and simple preparation process make it a highly promising candidate for the new generation hyperspectral detection countermeasure material.
1 Yang Y J, Hu B R, Wu W J. Journal of National University of Defense Technology, 2011, 33(5), 50 (in Chinese). 杨玉杰, 胡碧茹, 吴文健. 国防科技大学学报, 2011, 33(5), 50. 2 Xu K. Simulation of transpiration and solar spectral reflection characteristics of natural leaf. Ph. D. Thesis, University of Science and Technology of China, China, 2021 (in Chinese). 许凯. 植物叶片蒸腾和太阳光谱反射特征及其仿生. 博士学位论文, 中国科学技术大学, 2021. 3 Liu Z M. Research on biomimetic camouflage materials for plant leaves. Ph. D. Thesis, National University of Defense Technology, China, 2009 (in Chinese). 刘志明. 植物叶片仿生伪装材料研究. 博士学位论文, 国防科学技术大学, 2009. 4 Shen T. Research on imitation plant leaf material based on hyperspectral detection. Master's Thesis, University of Electronic Science and Technology of China, China, 2022 (in Chinese). 沈涛. 基于高光谱探测的仿植物叶片材料研究. 硕士学位论文, 电子科技大学, 2022. 5 Qin R, Xu G Y, Guo L. Materials Chemistry and Physics, 2012, 136(2-3), 737. 6 Li M, Li C, Zheng S L, et al. Infrared Technology, 2015, 37(9), 788 (in Chinese). 李敏, 李澄, 郑顺丽, 等. 红外技术, 2015, 37(9), 788. 7 Zhang L, Wu P, Chen H, et al. Materials Science in Semiconductor Processing, 2020, 105, 104672. 8 Luo J F, Xie C Q, Pan S L, et al. Journal of Quantitative Spectroscopy and Radiative Transfer, 2022, 287, 108228. 9 Xie D J, Lyu C L, Zu M, et al. Spectroscopy and Spectral Analysis, 2021, 41(4), 1032 (in Chinese). 谢东津, 吕呈龙, 祖梅, 等. 光谱学与光谱分析, 2021, 41(4), 1032. 10 Chen B. Preparation and performance study of imitation green plant spectrum coatings based on water retaining fillers. Master's Thesis, Xihua University, China, 2022 (in Chinese). 陈彪. 基于含水保水填料的仿绿色植物光谱涂料制备及性能研究. 硕士学位论文, 西华大学, 2022. 11 Rao C S. Study on preparation method of functional filler and coating for simulating plant near infrared spectrum. Master's Thesis, Xihua University, China, 2022 (in Chinese). 饶聪石. 模拟植物近红外光谱的功能填料及涂层制备方法研究. 硕士学位论文, 西华大学, 2022. 12 Xia C S, Chen L, Sun H M, et al. Journal of Functional Materials. 2018, 49(7), 5 (in Chinese). 夏晨硕, 陈乐, 孙惠敏, 等. 功能材料, 2018, 49(7), 5. 13 Hu A R. Preparation and properties of plant-like leaf spectral characteristics materials. Master's Thesis, Jiangnan University, China, 2020 (in Chinese). 胡安然. 仿植物叶片光谱特征材料的制备及其性能. 硕士学位论文, 江南大学, 2020. 14 Li S H, Shen Y G, Shi Z F. Applied Mechanics and Materials, 2011, 117-119, 1100. 15 Wu Q Q, Li N, Wang J J, et al. Protective Engineering, 2020, 42(6), 24 (in Chinese). 吴晴晴, 李宁, 王吉军, 等. 防护工程, 2020, 42(6), 24. 16 Zhang D D, Li M, Guan Y, et al. Journal of Textile Research, 2023, 41(1), 142 (in Chinese). 张典典, 李敏, 关玉, 等. 纺织学报, 2023, 41(1), 142. 17 Yuan L, Wang C, Qing X, et al. Infrared Physics & Technology, 2020, 107, 103328. 18 Liao Y T, Wang C Y, Mao M R, et al. Journal of Engineering Thermophysics, 2023, 44(5), 1304 (in Chinese). 廖雨田, 王晨逸, 毛铭冉, 等. 工程热物理学报, 2023, 44(5), 1304. 19 Ding D W, He X P, Liang S J. ACS Applied Materials & Interfaces, 2022, 21(2022), 14. 20 Miao S S, Wang Y J, Li C, et al. Materials Reports, 2024, 38(7), 22080054 (in Chinese). 苗珊珊, 王业健, 李澄, 等. 材料导报, 2024, 38(7), 22080054. 21 Zu M, Yan F, Cheng H F, et al. Science and Technology Herald, 2021, 39(14), 100 (in Chinese). 祖梅, 鄢峰, 程海峰, 等. 科技导报, 2021, 39(14), 100. 22 Li Y, Mei S, Byon Y, et al. ACS Sustainable Chemistry & Engineering, 2014, 2(2), 318. 23 Gao Y, Ye H. International Journal of Heat & Mass Transfer, 2017, 114, 115. 24 Jiang X J, Wang H L, Ling J, et al. Acta Armamentarii, 2017, 38(2), 6 (in Chinese). 蒋晓军, 王华林, 凌军, 等. 兵工学报, 2017, 38(2), 6. 25 Guo L. Near-infrared camouflage coating simulating the spectral characteristics of green vegetation. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2013 (in Chinese). 郭利. 模拟绿色植被光谱特征的近红外伪装涂层研究. 硕士学位论文, 南京航空航天大学, 2013. 26 Liu Q, He X. China Environmental Protection Industry, 2018, 65(2), 64.