Please wait a minute...
材料导报  2023, Vol. 37 Issue (24): 22060240-14    https://doi.org/10.11896/cldb.22060240
  高分子与聚合物基复合材料 |
微纳多孔聚合物基辐射冷却材料的制备、性能调控及应用
纪澄1, 王璟1,*, 孙骏宇2, 安一卓1
1 国防科技大学理学院,长沙 410073
2 国防科技大学空天科学学院,长沙 410073
Preparation, Regulation and Application of Micro/Nano-porous Polymer Based Radiative Cooling Materials
JI Cheng1, WANG Jing1,*, SUN Junyu2, AN Yizhuo1
1 College of Sciences, National University of Defense Technology, Changsha 410073, China
2 College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
下载:  全 文 ( PDF ) ( 42662KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 光和热是自然界最普遍的两种能量形式,通过对光的调控而实现对热的管理,是能源、环境、航空航天、军事防护等领域常用的被动式热管理手段。微纳多孔聚合物由于其独特的尺度和形貌可以实现对特定波长入射光的强反射,再借助聚合物自身官能团在中红外波段的本征吸收而表现出选择性红外辐射/透射特征,可以在较宽波段范围内发挥有效的光热调控功能,并且因为原材料成本低廉、制备方法简单、具备卷对卷规模化生产潜力及良好的耐候性和力学性能,而备受研究人员关注。本文以辐射冷却应用为背景,概述了微纳多孔聚合物材料的制备及形貌调控方法,在此基础上综述了多孔聚合物辐射冷却性能调控的相关研究成果,并进一步阐述了微纳多孔聚合物在辐射冷却领域的应用,最后对其存在的问题及未来的发展方向进行了总结和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
纪澄
王璟
孙骏宇
安一卓
关键词:  多孔聚合物  辐射冷却  可控制备  光谱调控  光热管理应用    
Abstract: Light and heat are the two most common energy forms in nature. Heat management realized by spectral regulation is a passive thermal management method commonly used in the fields of energy, environment, aerospace, military protection and so on. Owing to its unique scale and morphology, micro/nano-porous polymer can achieve high reflectance of incident light with specific wavelength, and with the selective radiation/transmittance by the intrinsic absorption of functional groups in the mid-infrared waveband, it can realize effective photothermal regulation in a wide waveband range. Moreover, micro/nano-porous polymer has attracted much attention of researchers on account of the low cost of raw materials, convenient fabrication, large-scale roll-to-roll production potential and good weather resistance and mechanical properties. Based on the application of radiative cooling as the background, this article introduces the preparation and morphology control methods of micro/nano-porous polymer, and on this basis, reviews the relevant research results of radiative cooling performance control of porous polymer and further expounds the application of porous polymer in the field of radiative cooling. Finally, this article summerizes the existing problems and prospects the future development.
Key words:  porous polymer    radiative cooling    controllable preparation    spectral regulation    photothermal management application
发布日期:  2023-12-19
ZTFLH:  G321  
通讯作者:  *王璟,国防科技大学理学院教授、硕士研究生导师。2009年获得国防科技大学博士学位,主要从事光热调控材料、吸波材料、热防护材料等方面的研究工作,先后主持和参与多项国家自然科学基金、科技委创新特区项目、总装探索重点项目和博士点基金等项目。发表论文30余篇,获授权专利10余项。jingwang@nudt.edu.cn   
作者简介:  纪澄,2021年7月学获得工学学士学位。现为国防科技大学理学院硕士研究生,在王璟教授的指导下进行研究。目前主要研究领域为光热调控材料。
引用本文:    
纪澄, 王璟, 孙骏宇, 安一卓. 微纳多孔聚合物基辐射冷却材料的制备、性能调控及应用[J]. 材料导报, 2023, 37(24): 22060240-14.
JI Cheng, WANG Jing, SUN Junyu, AN Yizhuo. Preparation, Regulation and Application of Micro/Nano-porous Polymer Based Radiative Cooling Materials. Materials Reports, 2023, 37(24): 22060240-14.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060240  或          http://www.mater-rep.com/CN/Y2023/V37/I24/22060240
1 Howell J R, Mengüç M P, Daun K, et al. Thermal radiation heat transfer, CRC Press, Florida, 2020.
2 Yin X, Yang R, Tan G, et al. Science, 2020, 370(6518), 786.
3 Li Z Z, Chen Q Y, Song Y, et al. Advanced Materials Technologies, 2020, 5(5), 1901007.
4 Liu Y, Pan D, Chen W, et al. Acta Physica Sinica, 2020, 69(3), 036501.
5 Raman A P, Anoma M A, Zhu L, et al. Nature, 2014, 515(7528), 540.
6 Mandal J, Yang Y, Yu N, et al. Joule, 2020, 4(7), 1350.
7 Su W F. Principles of polymer design and synthesis, WILEY-VCH Verlag, Berlin, 2013, pp. 9.
8 Rephaeli E, Raman A, Fan S. Nano Letters, 2013, 13(4), 1457.
9 Zhao Y, Pang D, Chen M, et al. Applied Materials Today, 2022, 26, 101298.
10 Sala-Casanovas M, Krishna A, Yu Z, et al. Nanoscale Microscale Thermophysical Engineering, 2019, 23(3), 173.
11 Kou J, Jurado Z, Chen Z, et al. ACS Photonics, 2017, 4(3), 626.
12 Zhao Y, Zhao Z, Zhu Z, et al. Progress in Natural Science-Materials International, 2021, 31(2), 270.
13 Yu X, Chen C. Building and Environment, 2021, 197, 107841.
14 Wei W, Zhu Y, Li Q, et al. Solar Energy Materials and Solar Cells, 2020, 211, 110525.
15 Du X X, Xin B J, Xu J H, et al. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2021, 612, 125924.
16 Ionita M, Crica L E, Voicu S I, et al. Polymers for Advanced Technologies, 2016, 27(3), 350.
17 Díez N, Sevilla M, Fuertes A B. Carbon, 2021, 178, 451.
18 Ren D F, Xuan Y M, Han Y G. CIESC Journal, 2012, 63(S1), 219(in Chinese).
任登凤, 宣益民, 韩玉阁. 化工学报, 2012, 63(S1), 219.
19 Li N, Liu X F, Kong Q P, et al. China High Technology Enterprises, 2010(3), 178(in Chinese).
李宁, 刘晓峰, 孔庆平, 等. 中国高新技术企业, 2010(3), 178.
20 Cha S W, Cho S H, Sohn J S, et al. International Journal of Molecular Sciences, 2019, 20(23), 6068.
21 Cao S, Zhang Y, Zhou L, et al. Journal of Materials Chemistry B, 2014, 2(41), 7243.
22 Yang Y, Deng D, Zhang S, et al. Advanced Materials, 2020, 32(22), e1908243.
23 Ryoo R. Nature, 2019, 575(7781), 40.
24 An G M, Wu H M, Li H, et al. Shandong Chemical Industry, 2019, 48(15), 3 (in Chinese).
安光密, 吴会敏, 李航, 等. 山东化工, 2019, 48(15), 3.
25 Jiang X C, Xiong S X, Tian Z A, et al. The Journal of Physical Chemistry C, 2011, 115(5), 1800.
26 Liu H, Sun H, Liu L, et al. Optical Materials, 2015, 44, 9.
27 Tao Y Y, Zhang J. Mater Letters, 2021, 304, 130675.
28 Wang T, Wu Y, Shi L, et al. Nature Communication, 2021, 12(1), 365.
29 Caixeiro S, Peruzzo M, Onelli O D, et al. ACS Applied Materials & Interfaces, 2017, 9(9), 7885.
30 Tao Y, Mao Z, Yang Z, et al. Energy Build, 2020, 225, 110361.
31 Weng Y Z W, Zhang W F, Jiang Y, et al. Solar Energy Materials and Solar Cells, 2021, 230, 111205.
32 Zhou L, Rada J, Zhang H, et al. Advance Science (Weinh), 2021, 8(23), e2102502.
33 Tsai H A, Kuo C Y, Lin J H, et al. Journal of Membrane Science, 2006, 278(1-2), 390.
34 Kesting R E. Synthetic polymeric membranes:a structural perspectives, New Jersey, Wiley-Interscience, 1985, pp.432.
35 Zeman L, Fraser T. Journal of Membrane Science, 1993, 84(1), 93.
36 Mandal J, Fu Y, Overvig A C, et al. Science, 2018, 362(6412), 315.
37 Wang J, Sun J, Guo T, et al. Advance Material Technologies, 2022, 7(1), 2100528.
38 Yang M, Zou W, Guo J, et al. ACS Applied Materials & Interfaces, 2020, 12(22), 25286.
39 Kim J K, Taki K, Ohshima M. Langmuir, 2007, 23(24), 12397.
40 Pasman T, Baptista D, Van Riet S, et al. Membranes (Basel), 2020, 10(11), 330.
41 Zhang Y J, Yuan L F, Zhao L W, et al. Technology of Water Treatment, 2017, 43(2), 3 (in Chinese).
张瑛洁, 袁龙飞, 赵丽文, 等. 水处理技术, 2017, 43(2), 3.
42 Nguyen Q T, Alaoui O T, Yang H, et al. Journal Membrane Science, 2010, 358(1-2), 13.
43 Liu H L, Wang S Q, Xiao Z F, et al. Polymer Materials Science Engineering, 2018, 34(3), 161(in Chinese).
刘海亮, 王世乾, 肖长发, 等. 高分子材料科学与工程, 2018, 34(3), 161.
44 California A, Cardoso V F, Costa C M, et al. Europen Polymer Journal , 2011, 47(12), 2442.
45 Zhu Q, Yu Y, Wu Q Y, et al. Chinese Journal of Chemical Physics, 2017, 30(2), 219.
46 Wu Q Y, Liu B T, Li M, et al. Journal of Membrane Science, 2013, 437, 227.
47 Yu Y, Wu Q Y, Liang H Q, et al. Journal of Applied Polymer Science, 2017, 134(6), 44454.
48 Liang H Q, Wu Q Y, Wan L S, et al. Journal of Membrane Science, 2014, 465, 56.
49 Yang B, Wang S Q, Chen Q T, et al. Journal of Polymer Research, 2021, 28(8), 1.
50 Lloyd D R, Lim G B. Journal of Membrane Science, 1993, 79(1), 27.
51 Pochivalov K V, Basko A V, Lebedeva T N, et al. Material Today Communications, 2021, 28, 102558.
52 Tang Y H, Lin Y K, Li Q, et al. Membrane Science and Technology, 2015, 35(2), 98(in Chinese).
唐元晖, 林亚凯, 李倩, 等. 膜科学与技术, 2015, 35(2), 98.
53 Wu Z, Cui Z, Li T, et al. Applied Surface Science, 2017, 419, 429.
54 Garcia J U, Iwama T, Chan E Y, et al. ACS Macro Letters, 2020, 9(11), 1617.
55 Wang D M, Lai J Y. Current Opinion in Chemical Engineering, 2013, 2(2), 229.
56 Guillen G R, Pan Y, Li M, et al. Industrial and Engineering Chemistry Research, 2011, 50(7), 3798.
57 Buonomenna M G, Macchi P, Davoli M, et al. European Polymer Journal, 2007, 43(4), 1557.
58 Zuo D Y, Xu Y Y, Zeng Q X, et al. Chemistry, 2008(5), 336(in Chinese).
左丹英, 徐又一, 曾秋霞, 等. 化学通报, 2008(5), 336.
59 García-Payo M C, Essalhi M, Khayet M. Journal of Membrane Science, 2010, 347(1-2), 209.
60 Li Q, Xu Z L, Lv J. Journal of Chemical Engineering of Chinese Universities, 2010, 24(2), 336(in Chinese).
李倩, 许振良, 吕洁. 高校化学工程学报, 2010, 24(2), 336.
61 Zuo D Y, Yxu Y Y, Liu H T. Journal of Functional Polymers, 2008, 21(4), 380(in Chinese).
左丹英, 徐又一, 刘洪涛. 功能高分子学报, 2008, 21(4), 380.
62 Li J F, Xu Z L, Yang H. Polymer Advanced Technology, 2008, 19(4), 251.
63 Plisko T V, Penkova A V, Burts K S, et al. Journal of Membrane Science, 2019, 580, 336.
64 Mansourizadeh A, Ismail A F. Chemical Engineering Journal, 2010, 165(3), 980.
65 Wang X, Liu X, Li Z, et al. Advanced Functional Materials, 2020, 30(5), 1907562.
66 Liu B Y, Xue C H, Zhong H M, et al. Journal Materials Chemistry A, 2021, 9(43), 24276.
67 Song Y N, Lei M Q, Lei J, et al. Materials Today Energy, 2020, 18, 100504.
68 Guo T T, Wang J, Sun J Y, et al. Guangzhou Chemical Industry, 2021, 49(24), 43(in Chinese).
郭涛涛, 王璟, 孙骏宇, 等. 广州化工, 2021, 49(24), 43.
69 Venault A, Chang Y, Wang D M, et al. Polymer Reviews, 2013, 53(4), 568.
70 Lee H J, Jung B, Kang Y S, et al. Journal of Membrane Science, 2004, 245(1-2), 103.
71 Matsuyama H, Teramoto M, Nakatani R, et al. Journal of Applied Polymer Science, 1999, 74(1), 159.
72 Huo P, Zhong C T, Xiong X P. Chinese Journal of Polymer Science, 2020, 39(5), 610.
73 Zhao Q, Xie R, Luo F, et al. Journal of Membrane Science, 2018, 549, 151.
74 Su Y S, Kuo C Y, Wang D M, et al. Journal of Membrane Science, 2009, 338(1-2), 17.
75 Ismail N, Venault A, Mikkola J P, et al. Journal of Membrane Science, 2020, 597, 117601.
76 Li D, Liu X, Li W, et al. Nature Nanotechnology, 2021, 16(2), 153.
77 Wang X, Liu X H, Li Z Y, et al. Advanced Functional Materialss, 2019, 30(5), 1907562.
78 Hubbard A. J Journal of Colloid and Interface Science, 2006, 297(2), 849.
79 Connal L A, Gurr P A, Qiao G G, et al. Journal of Materials Chemistry, 2005, 15(12), 1286.
80 Gurr P A, Zhang Z, Hao X, et al. Australian Journal of Chemistry, 2016, 69(10), 1130.
81 Zhang S, Xu T, Chai S, et al. Polymer, 2017, 117, 306.
82 Lee L R, Liu C T, Tseng H F, et al. Langmuir, 2018, 34(25), 7472.
83 Huang J, Hao H, Huang Y, et al. Langmuir, 2021, 37(19), 6016.
84 Wang J L, Yu B, Cong H L, et al. Integrated Ferroelectrics, 2012, 138(1), 100.
85 Cong H L, Wang J L, Yu B, et al. Soft Matter, 2012, 8(34), 8835.
86 Lei C H, Hu B, Xu R J, et al. Journal of Applied Polymer Science, 2014, 131(7), 40077.
87 Lei C H, Xu R J, Cai Q I, et al. ACEM14 Advances in Civil, Enviromental and Materials Research, Busan, 2014, 54(1), 44.
88 Wang W, Xu J L, Lin Y F, et al. Chemical Journal of Chinese Universities, 2017, 38(11), 2128(in Chinese).
王卫, 徐佳丽, 林元菲, 等. 高等学校化学学报, 2017, 38(11), 2128.
89 Xi Z Y, Xu Y Y, Zhu L P, et al. Polymers for Advanced Technologies, 2008, 19(11), 1616.
90 Gao Y F, Xiao Z F, Ji D W, et al. Chemical Journal of Chinese Universities, 2021, 42(6), 2065(in Chinese).
高翼飞, 肖长发, 冀大伟, 等. 高等学校化学学报, 2021, 42(6), 2065.
91 Yang D, Tian Z, Song J, et al. Materials Research Express, 2021, 8(10), 106519.
92 Lindenmeyer P H, Hosemann R. Journal of Applied Physics, 1963, 34(1), 42.
93 Zeyghami M, Goswami D Y, Stefanakos E. Solar Energy Materials and Solar Cells, 2018, 178, 115.
94 Bernards D A, Desai T A. Soft Matter, 2010, 6(8), 1621.
95 Zhu L X, Raman A, Wang K X, et al. Optica, 2014, 1(1), 32.
96 Hossain M M, Jia B, Gu M. Advanced Optical Materials, 2015, 3(8), 1047.
97 Jia Z X, Shuai Y, Li M, et al. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 207, 23.
98 Han D, Ng B F, Wan M P. Solar Energy Materials and Solar Cells, 2020, 206, 110270.
99 Liu J, Zhou Z, Zhang D, et al. Renewable Energy, 2020, 155, 90.
100 Lü H, Chu C X, You K, et al. Optik, 2017, 140, 25.
101 Person S, Jain M, Lapin Z, et al. Nano Letters, 2013, 13(4), 1806.
102 Xu D, Sun L, Zhang Z, et al. Applied Materials Today, 2021, 24, 101124.
103 Ross W D. Industrial and Engineering Chemistry Research, 1974, 13(1), 45.
104 Luo H, Zhu Y, Xu Z, et al. Nano Letters, 2021, 21(9), 3879.
105 Yang Y, Jin Q, Mao D, et al. Advanced Materials, 2017, 29, 1604795.
106 Chen M, Pang D, Mandal J, et al. Nano Letters, 2021, 21(3), 1412.
107 Yalçın R A, Blandre E, Joulain K, et al. Solar Energy Materials and Solar Cells, 2020, 206, 110320.
108 Feng C Z, Yang P H, Liu H D, et al. Nano Energy, 2021, 85, 105971.
109 Yalçın R A, Blandre E, Joulain K, et al. ACS Photonics, 2020, 7(5), 1312.
110 Levinson R, Berdahl P, Akbari H, et al. Solar Energy Materials and Solar Cells, 2007, 91(4), 304.
111 Steirer K X, Reese M O, Rupert B L, et al. Solar Energy Materials and Solar Cells, 2009, 93(4), 447.
112 Gilissen K, Stryckers J, Verstappen P, et al. Organic Electronics, 2015, 20, 31.
113 Hu X, Tian M, Xu T, et al. ACS Nano, 2020, 14(1), 559.
114 Cong R, Hu G J, Yu G L, et al. Journal of Infrared and Millimeter Waves, 2015, 34(3), 297(in Chinese).
丛蕊, 胡古今, 俞国林, 等. 红外与毫米波学报, 2015, 34(3), 297.
115 Xiang B, Zhang R, Luo Y L, et al. Nano Energy, 2021, 81, 105600.
116 Chen X, He M, Feng S, et al. Optical Materials, 2021, 120, 111431.
117 Chen Y, Mandal J, Li W, et al. Science Advances, 2020, 6(17), eaaz5413.
118 Cui Y, Gong H X, Wang Y J, et al. Advanced Materials, 2018, 30(14), 1706807.
119 Wilts B D, Wijnen B, Leertouwer H L, et al. Advanced Optical Materials, 2017, 5(3), 1600879.
120 Cortese L, Pattelli L, Utel F, et al. Advanced Optical Materials, 2015, 3(10), 1337.
121 Bell G R, Mathger L M, Gao M, et al. Advanced Materials, 2014, 26(25), 4352- .
122 Vukusic P, Hallam B, Noyes J. Science, 2007, 315(5810), 348.
123 Luke S M, Hallam B T, Vukusic P. Optical Applicata 2010, 49(22), 4246.
124 Yip J, Ng S P, Wong K H. Textile Research Journal, 2009, 79(9), 771.
125 Toivonen M S, Onelli O D, Jacucci G, et al. Advanced Materials, 2018, 30(16), e1704050.
126 Shi N N, Tsai C C, Carter M J, et al. Light:Science & Applications, 2018, 7, 37.
127 Li T, Zhai Y, He S, et al. Science, 2019, 364(6442), 760.
128 Zhang X A, Yu S J, Xu B B, et al. Science, 2019, 363(6427), 619.
129 Fu K, Yang Z, Pei Y, et al. Advanced Fiber Materials, 2019, 1(1), 61.
130 Li X H, Liu C, Feng S P, et al. Joule, 2019, 3(1), 290.
131 Mandal J, Jia M, Overvig A, et al. Joule, 2019, 3(12), 3088.
132 Zhao H, Sun Q, Zhou J, et al. Advanced Materials, 2020, 32(29), e2000870.
133 Wang J, Xie M, An Y Z, et al. Solar Energy Materials and Solar Cells, 2022, 246, 111883.
134 Stuart B. Kirk-Othmer Encyclopedia of Chemical Technology, 2000, 14, 1.
135 Fierro J. Studies in surface science and catalysis, Elsevier, Amsterdam, 1990, pp.B67.
136 Zeighami F, Tehran M A. Journal of Industrial Textiles, 2015, 46(2), 495.
137 Catalanotti S, Cuomo V, Piro G, et al. Solar Energy, 1975, 17(2), 83.
138 Grenier P. Revue de Physique Appliquée, 1979, 14(1), 87.
139 Granqvist C G, Hjortsberg A. Journal of Applied Physics, 1981, 52(6), 4205.
140 Li J L, Liang Y, Li W, et al. Science Advances, 2022, 8(6), eabj9756.
141 Aili A, Wei Z Y, Chen Y Z, et al. Materials Today Physics, 2019, 10, 100127.
142 Samuel D G L, Nagendra S M S, Maiya M P. Building and Environment, 2013, 66, 54.
143 Lu X, Xu P, Wang H, et al. Renewable and Sustainable Energy Reviews, 2016, 65, 1079.
144 Rahman T, Nagano K, Togawa J. Energy and Building, 2019, 191, 59.
145 Nie X, Yoo Y, Hewakuruppu H, et al. Scientific Reports, 2020, 10(1), 6661.
146 Li X, Sun B, Sui C, et al. Nature Communication, 2020, 11(1), 6101.
147 Xiao Z, Zhu H, Wang S, et al. Advanced Materials Interfaces, 2020, 7(8), 2000013.
148 Wang H D, Xue C H, Guo X J, et al. Applied Materials Today, 2021, 24, 101100.
149 Hsu P C, Liu X, Liu C, et al. Nano Letters, 2015, 15(1), 365.
150 Cai L, Song A Y, Wu P, et al. Nature Communications, 2017, 8(1), 496.
151 Hsu P C, Song A Y, Catrysse P B, et al. Science, 2016, 353(6303), 1019.
152 Cai L, Song A Y, Li W, et al. Advanced Materials, 2018, 30(35), e1802152.
153 Zeng S N, Pian S J, Su M Y, et al. Science, 2021, 373(6555), 692.
154 Zhu B, Li W, Zhang Q, et al. Nature Nanotechnology, 2021, 16(12), 1342.
155 Hsu P C, Liu C, Song A Y, et al. Science Advances, 2017, 3(11), e1700895.
156 Luo H, Zhu Y, Xu Z, et al. Nano Letters, 2021, 21(9), 3879.
157 Xu D S, Tao J Y, Chen S. Journal of Hunan Institute of Science and Technology(Natural Sciences), 2008, 21(4), 35(in Chinese).
徐代升, 陶家友, 陈松. 湖南理工学院学报(自然科学版), 2008, 21(4), 35.
158 Xie M. Preparation and propertise of colored radiative cooling coatings. Master’s Thesis, National University of Defense Technology, China, 2022 (in Chinese).
谢敏. 彩色辐射冷却涂层的制备及性能研究. 硕士学位论文, 国防科技大学, 2022.
159 Skoplaki E, Palyvos J A. Solar Energy, 2009, 83(5), 614.
160 Gao W, Lei Z, Wu K, et al. Advanced Functional Materials, 2021, 31(21), 2100535.
161 Lv T Z, Huang J P, Liu W, et al. Case Studies in Thermal Enginee-ring, 2020, 18, 100596.
162 Olwi I A, Sabbagh J A, Khalifa A M A. Solar Energy, 1992, 48(5), 279.
163 Zhang K, Zhao D, Zhai Y, et al. Applied Thermal Engineering, 2017, 127, 1564.
[1] 李振扬, 王盼, 张海文, 周涵. 辐射冷却材料的制备方法综述[J]. 材料导报, 2022, 36(3): 20120012-6.
[2] 李培, 秦亮, 何红, 张亚军. 含SiO2/SiC可昼夜降温辐射冷却膜的制备与实验研究[J]. 材料导报, 2021, 35(14): 14185-14189.
[3] 金嘉炜, 刘传扬, 张冶, 刘国伟, 楚增勇, 李公义. 金纳米线的制备及传感应用研究进展[J]. 材料导报, 2020, 34(5): 5085-5095.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed