Please wait a minute...
材料导报  2025, Vol. 39 Issue (7): 24030107-6    https://doi.org/10.11896/cldb.24030107
  金属与金属基复合材料 |
高速激光熔覆Fe基非晶涂层裂纹及组织分析
俞伟元*, 景瑞, 董鹏飞, 吴保磊, 李扬, 强潇
兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室, 兰州 730050
Crack and Microstructure Analysis of High-speed Laser Clad Fe-based Amorphous Coating
YU Weiyuan*, JING Rui, DONG Pengfei, WU Baolei, LI Yang, QIANG Xiao
State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 25608KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了减小激光喷涂熔覆层中的裂纹率,采用高速激光熔覆技术,在增大激光功率的条件下大幅增大激光扫描速度,制备了Fe基非晶熔覆层。采用X射线衍射仪(XRD)、光学显微镜以及配置能谱仪(EDS)的电子显微镜等研究了熔覆层的形貌和不同区域物相;用Jade软件计算了熔覆层的相对非晶含量;用多物理场仿真软件COMSOL Multiphysics模拟了熔覆层的温度场和热应力。研究发现,高速激光熔覆得到的Fe基熔覆层晶粒尺寸、非晶相含量和裂纹率分别随激光扫描速度的增大而减小、升高和减小。与常规扫描速度得到的熔覆层相比,不同扫描速度下的高速激光熔覆层非晶相含量均较低。模拟结果证明,通过增大激光扫描速度可以减小熔覆层中的热输入,从而减小其热应力,降低熔覆层的开裂倾向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
俞伟元
景瑞
董鹏飞
吴保磊
李扬
强潇
关键词:  Fe基非晶涂层  激光熔覆  裂纹率  非晶相含量    
Abstract: In order to reduce the crack rate in the laser spraying clad layer, the Fe-based amorphous clad layer was prepared by using high speed laser cladding technology and greatly increasing the laser scan speed under the condition of increasing the laser power. The morphology and different phases of the clad layer were studied by means of X-ray diffractometry (XRD), optical microscopy, and electron microscopy accompanied by energy dispersive spectrometry (EDS). The relative amorphous content of the clad layer was calculated by Jade software. The temperature field and thermal stress of clad layer were simulated by COMSOL Multiphysics. It was found that the grain size, amorphous phase content, and crack rate of the clad layer changed inversely, positively, and inversely with the increase of laser scan speed, respectively. The prepared clad layer, compared with that clad with the conventional scan speed, had a lower amorphous phase content. The simulation results confirmed that increasing the laser scan speed led to the reduction of the heat input in the clad layer, thus mitigating the thermal stress and suppressing the cracking tendency of the clad layer.
Key words:  Fe-based amorphous coating    laser cladding    crack rate    amorphous phase content
出版日期:  2025-04-10      发布日期:  2025-04-10
ZTFLH:  TG174.445  
基金资助: 甘肃省科技重点研发计划(20YF8GA053)
通讯作者:  *俞伟元,博士,兰州理工大学材料科学与工程学院教授、博士研究生导师。主要从事先进钎焊技术、表面工程等领域的研究。weiyuanyu2018@163.com   
引用本文:    
俞伟元, 景瑞, 董鹏飞, 吴保磊, 李扬, 强潇. 高速激光熔覆Fe基非晶涂层裂纹及组织分析[J]. 材料导报, 2025, 39(7): 24030107-6.
YU Weiyuan, JING Rui, DONG Pengfei, WU Baolei, LI Yang, QIANG Xiao. Crack and Microstructure Analysis of High-speed Laser Clad Fe-based Amorphous Coating. Materials Reports, 2025, 39(7): 24030107-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030107  或          https://www.mater-rep.com/CN/Y2025/V39/I7/24030107
1 Yu X. Mechanical Research & Application, 2024, 37(3), 23 (in Chinese).
俞鑫. 机械研究与应用, 2024, 37(3), 23.
2 Xiang N X, Zhou H M, Wang Y H, et al. Laser & Optoelectronics Progress, 2024, 61(17), 282 (in Chinese).
向南鑫, 周后明, 王宇豪, 等. 激光与光电子学进展, 2024, 61(17), 282.
3 Wang H Z, Cheng Y H, Song W, et al. Intermetallics, 2021, 136, 10726.
4 Cao Z H, Guo W, Lyu S L, et al. Journal of Netshape Forming Engineering, 2024, 16(3), 62 (in Chinese).
曹梓恒, 郭威, 吕书林, 等. 精密成形工程, 2024, 16(3), 62.
5 Wang M, Lü S, Wu S, et al. Journal of Alloys and Compounds, 2023, 934, 168058.
6 Li H, Lu Z, Wang S, et al. Progress in Materials Science, 2019, 103, 23.
7 Li F. Investigation on microstructure and properties of Fe-based amorphous coating deposited by thermal spraying. Master's Thesis, Central South University, China, 2012 (in Chinese).
李飞. 热喷涂制备Fe基非晶态合金涂层的组织结构与性能研究. 硕士学位论文, 中南大学, 2012.
8 Schuh A C, Hufnagel C T, Ramamurty U. Acta Materialia, 2007, 55(12), 406.
9 Guo S, Liu L, Li N, et al. Scripta Materialia, 2010, 62(6), 32.
10 Yoon S, Lee C, Choi H. Materials Science & Engineering A, 2006, 449, 285.
11 Ha H M, Miller J R, Payer J H. Journal of the Electrochemical Society, 2009, 156(8), C246.
12 Wang Y B, Ying L X, Dong G J, et al. Progress of Materials in China, 2009, 28(3), 17 (in Chinese).
王一博, 应丽霞, 董国君, 等. 中国材料进展, 2009, 28(3), 17.
13 Ding Y X, Zhou L Z. Metal Hotworking Technology, 2007, 36(6), 69 (in Chinese).
丁阳喜, 周立志. 热加工工艺, 2007, 36(6), 69.
14 Qi K, Yang Y, Sun R, et al. Optics & Laser Technology, 2021, 141, 107129.
15 Ouyang C Y, Bai Q F, Han B H, et al. Heat Treatment of Metals, 2022, 47(5), 252 (in Chinese).
欧阳昌耀, 白峭峰, 韩斌慧, 等. 金属热处理, 2022, 47(5), 252.
16 Yu J M, Lu X, Chao M J, et al. Applied Laser, 2006, 26(3), 175 (in Chinese).
余菊美, 卢洵, 晁明举, 等. 应用激光, 2006, 26(3), 175.
17 Liu Y N, Sun R L, Niu W, et al. Surface Technology, 2018, 47(12), 134 (in Chinese).
刘亚楠, 孙荣禄, 牛伟, 等. 表面技术, 2018, 47(12), 134.
18 Li R, Yuan W, Yue H, et al. Optics & Laser Technology, 2022, 146, 10757.
19 Shang X, Zhang C, Xv T, et al. Materials Chemistry and Physics, 2021, 263, 124407.
20 Lee, Yousub, Nordin, et al. Metallurgical and Materials Transactions, 2014, 45(4), 1520.
21 Liu X L. Finite element simulation of laser cladding nickel-base composite coatings. Master's Thesis, East China Jiaotong University, China, 2018 (in Chinese).
刘学林. 激光熔覆镍基复合涂层有限元模拟. 硕士学位论文, 华东交通大学, 2018.
22 Kadolkar P, Watkins T R, De Hosson J T M, et al. Acta Materialia, 2007, 55(4), 1203.
[1] 雷经发, 赵晨霞, 刘涛, 沈朝阳, 李思悦. 激光熔覆Inconel 625合金高温高应变率下的力学行为及本构模型[J]. 材料导报, 2025, 39(4): 23120263-7.
[2] 张泽疆, 李新梅, 朱春金, 李航, 杨定力. 纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2025, 39(3): 23090210-9.
[3] 谢晓明, 沈鹰, 刘秀波, 朱正兴, 李明曦. Mn含量对激光熔覆FeCoCrNiMnx高熵合金涂层高温摩擦学性能的影响[J]. 材料导报, 2024, 38(23): 23120066-9.
[4] 舒林森, 张粲东, 于鹤龙, 张朝铭. 激光熔覆原位Ti-C-B-Al复合涂层的结构特征与力学性能[J]. 材料导报, 2024, 38(2): 22080162-5.
[5] 张志强, 杨倩, 于子鸣, 张天刚, 路学成, 王浩. 激光功率对Ti6Al4V/NiCr-Cr3C2熔覆层宏微观组织及性能的影响[J]. 材料导报, 2024, 38(2): 22100243-7.
[6] 刘春泉, 熊芬, 彭龙生, 黄伟, 林英华. 超高速激光熔覆技术的最新研究进展:关键技术特点及优势,设备研发及其技术参数[J]. 材料导报, 2024, 38(17): 23020075-19.
[7] 宁晨红, 高硕洪, 郑江鹏, 王枭, 杨军红, 苏允海, 刘敏, 闫星辰. 蓝光激光熔覆纯铜覆层的组织及性能[J]. 材料导报, 2024, 38(17): 23040078-7.
[8] 李占明, 王宏宇, 孙晓峰, 王梦璐, 王瑞, 宋巍. 超声振动在激光熔覆中的作用机制及研究进展[J]. 材料导报, 2024, 38(16): 23040040-8.
[9] 操慧珺, 李韦承, 张天刚, 张宏伟, 张志强. TC4表面WC/Ni-MoS2钛基复合涂层组织与摩擦学性能[J]. 材料导报, 2024, 38(15): 24020099-8.
[10] 魏新龙, 戴凡昌, 付二广, 班傲林, 张超. 单道激光熔覆高熵合金工艺优化及复合涂层耐冲蚀性能研究[J]. 材料导报, 2024, 38(14): 23020130-7.
[11] 肖华强, 尹星贵, 冯进宇, 肖易, 龚玉婷. TC4钛合金表面激光熔覆Ti-Mo-Al-B复合涂层的组织及摩擦磨损性能[J]. 材料导报, 2024, 38(12): 22080075-6.
[12] 陈飞寰, 蔡召兵, 董颖辉, 林广沛, 张坡, 卢冰文, 古乐. 激光熔覆NbMoTaWV难熔高熵合金涂层的高温氧化行为[J]. 材料导报, 2024, 38(10): 22110117-8.
[13] 李素丽, 马恺悦, 冯高磊, 熊杰, 李连强. 激光熔覆同路送丝光路结构设计及分析[J]. 材料导报, 2023, 37(6): 21090270-6.
[14] 畅庚榕, 刘明霞, 孟瑜, 郭岩, 马大衍, 李世亮, 徐可为. H13钢表面同质激光熔覆中WC微合金化行为及摩擦学性能研究[J]. 材料导报, 2023, 37(22): 22030041-6.
[15] 赵燕春, 张林浩, 师自强, 李文生, 张东, 寇生中. 304不锈钢表面激光熔覆铁基中熵合金涂层组织性能研究[J]. 材料导报, 2023, 37(19): 22050201-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed