Abstract: In order to reduce the crack rate in the laser spraying clad layer, the Fe-based amorphous clad layer was prepared by using high speed laser cladding technology and greatly increasing the laser scan speed under the condition of increasing the laser power. The morphology and different phases of the clad layer were studied by means of X-ray diffractometry (XRD), optical microscopy, and electron microscopy accompanied by energy dispersive spectrometry (EDS). The relative amorphous content of the clad layer was calculated by Jade software. The temperature field and thermal stress of clad layer were simulated by COMSOL Multiphysics. It was found that the grain size, amorphous phase content, and crack rate of the clad layer changed inversely, positively, and inversely with the increase of laser scan speed, respectively. The prepared clad layer, compared with that clad with the conventional scan speed, had a lower amorphous phase content. The simulation results confirmed that increasing the laser scan speed led to the reduction of the heat input in the clad layer, thus mitigating the thermal stress and suppressing the cracking tendency of the clad layer.
1 Yu X. Mechanical Research & Application, 2024, 37(3), 23 (in Chinese). 俞鑫. 机械研究与应用, 2024, 37(3), 23. 2 Xiang N X, Zhou H M, Wang Y H, et al. Laser & Optoelectronics Progress, 2024, 61(17), 282 (in Chinese). 向南鑫, 周后明, 王宇豪, 等. 激光与光电子学进展, 2024, 61(17), 282. 3 Wang H Z, Cheng Y H, Song W, et al. Intermetallics, 2021, 136, 10726. 4 Cao Z H, Guo W, Lyu S L, et al. Journal of Netshape Forming Engineering, 2024, 16(3), 62 (in Chinese). 曹梓恒, 郭威, 吕书林, 等. 精密成形工程, 2024, 16(3), 62. 5 Wang M, Lü S, Wu S, et al. Journal of Alloys and Compounds, 2023, 934, 168058. 6 Li H, Lu Z, Wang S, et al. Progress in Materials Science, 2019, 103, 23. 7 Li F. Investigation on microstructure and properties of Fe-based amorphous coating deposited by thermal spraying. Master's Thesis, Central South University, China, 2012 (in Chinese). 李飞. 热喷涂制备Fe基非晶态合金涂层的组织结构与性能研究. 硕士学位论文, 中南大学, 2012. 8 Schuh A C, Hufnagel C T, Ramamurty U. Acta Materialia, 2007, 55(12), 406. 9 Guo S, Liu L, Li N, et al. Scripta Materialia, 2010, 62(6), 32. 10 Yoon S, Lee C, Choi H. Materials Science & Engineering A, 2006, 449, 285. 11 Ha H M, Miller J R, Payer J H. Journal of the Electrochemical Society, 2009, 156(8), C246. 12 Wang Y B, Ying L X, Dong G J, et al. Progress of Materials in China, 2009, 28(3), 17 (in Chinese). 王一博, 应丽霞, 董国君, 等. 中国材料进展, 2009, 28(3), 17. 13 Ding Y X, Zhou L Z. Metal Hotworking Technology, 2007, 36(6), 69 (in Chinese). 丁阳喜, 周立志. 热加工工艺, 2007, 36(6), 69. 14 Qi K, Yang Y, Sun R, et al. Optics & Laser Technology, 2021, 141, 107129. 15 Ouyang C Y, Bai Q F, Han B H, et al. Heat Treatment of Metals, 2022, 47(5), 252 (in Chinese). 欧阳昌耀, 白峭峰, 韩斌慧, 等. 金属热处理, 2022, 47(5), 252. 16 Yu J M, Lu X, Chao M J, et al. Applied Laser, 2006, 26(3), 175 (in Chinese). 余菊美, 卢洵, 晁明举, 等. 应用激光, 2006, 26(3), 175. 17 Liu Y N, Sun R L, Niu W, et al. Surface Technology, 2018, 47(12), 134 (in Chinese). 刘亚楠, 孙荣禄, 牛伟, 等. 表面技术, 2018, 47(12), 134. 18 Li R, Yuan W, Yue H, et al. Optics & Laser Technology, 2022, 146, 10757. 19 Shang X, Zhang C, Xv T, et al. Materials Chemistry and Physics, 2021, 263, 124407. 20 Lee, Yousub, Nordin, et al. Metallurgical and Materials Transactions, 2014, 45(4), 1520. 21 Liu X L. Finite element simulation of laser cladding nickel-base composite coatings. Master's Thesis, East China Jiaotong University, China, 2018 (in Chinese). 刘学林. 激光熔覆镍基复合涂层有限元模拟. 硕士学位论文, 华东交通大学, 2018. 22 Kadolkar P, Watkins T R, De Hosson J T M, et al. Acta Materialia, 2007, 55(4), 1203.