Please wait a minute...
材料导报  2025, Vol. 39 Issue (7): 24030138-7    https://doi.org/10.11896/cldb.24030138
  无机非金属及其复合材料 |
具有P和S双空位的镍钴纳米花复合材料用作超级电容器电极的研究
吴学虎, 孙立贤*, 徐芬*, 李彬, 方淞文, 张靖, 陈翔, 宋领君, 卢俊铭, 高源, 杜毛湛, 徐如丹
桂林电子科技大学材料科学与工程学院, 广西信息材料重点实验室暨广西新能源与材料结构与性能协同创新中心, 广西 桂林 541004
A Study on Nickel-Cobalt Nanoflower Composite Materials with P and S Double Vacancies as Supercapacitor Electrodes
WU Xuehu, SUN Lixian*, XU Fen*, LI Bin, FANG Songwen, ZHANG Jing, CHEN Xiang, SONG Lingjun, LU Junming, GAO Yuan, DU Maozhan, XU Rudan
Guangxi Key Laboratory of Information Materials & Guangxi Collaborative Innovation Center for Structure and Properties for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
下载:  全 文 ( PDF ) ( 28744KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,多元过渡金属氧化物和硫化物在超级电容器电极材料领域备受关注,其中NiCo2S4其低成本、低电负性和强的电化学活性而成为研究热点。然而,NiCo2S4电子电导率较低,反应动力学较慢,导致比容量低,倍率性能差,容量衰减快,实际应用受限。因此,提高NiCo2S4的电导率和反应速率是提高其电化学性能的关键。本工作采用水热法、硫化法和磷化法制备了具有P、S双空位的镍钴纳米花(P-NiCo2Sn),其在磷化过程中可以同时获得P掺杂和S空位双缺陷。双缺陷可以调节电子结构,产生丰富的电化学位点,促进电子转移和改善反应动力学。该纳米花结构的比表面积为66.342 m2·g-1。P-NiCo2Sn电极在1 A·g-1电流密度下的比电容为1 257 F·g-1,在800 W·kg-1功率密度下表现出44.2 Wh·kg-1的能量密度。组装的P-NiCo2Sn//AC非对称超级电容器在10 000次连续充电/放电循环后的容量保持率为89.9%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴学虎
孙立贤
徐芬
李彬
方淞文
张靖
陈翔
宋领君
卢俊铭
高源
杜毛湛
徐如丹
关键词:  缺陷  磷化法  纳米花  高循环性能    
Abstract: Multinary transition metal oxides and sulfides have garnered intensive interest in the field of supercapacitor electrodes, among which NiCo2S4 has been considered as a hotspot owing to its low cost, low electronegativity and strong electrochemical activity. However, its low electron conductivity and sluggish reaction kinetics have resulted in low specific capacitance, poor rate performance, and rapid capacity decay, limiting its practical applications. Therefore, enhancing the electron conductivity and reaction kinetics of NiCo2S4 is crucial for improving its electrochemical performance. In this study, phosphorus and sulfur co-defected nickel cobalt nanoflowers (P-NiCo2Sn) were synthesized via hydrothermal, sulfidation, and phosphorization methods. During the phosphorization process, both P doping and S vacancy double defects were obtained. These double defects can modulate the electronic structure, generate abundant electrochemical active sites, facilitate electron transfer, and promote reaction dynamics. Moreover, the nanoflower structure has a specific surface area of 66.342 m2·g-1. The P-NiCo2Sn electrode exhibits a specific capacitance of 1 257 F·g-1 at a current density of 1 A·g-1, and an energy density of 44.2 Wh·kg-1 at a power density of 800 W·kg-1. The assembled P-NiCo2Sn//AC asymmetric supercapacitor retains 89.9% of its capacity after 10 000 consecutive charge/discharge cycles.
Key words:  defect    phosphorization method    nanoflowers    high cycling performance
出版日期:  2025-04-10      发布日期:  2025-04-10
ZTFLH:  TB34  
基金资助: 广西科技计划(桂科AA24206022);国家自然科学基金(U20A20237;52461032;52371218;52271205;552101245);广西科学研究与技术开发计划项目(AA19182014;AD17195073;AA17202030-1;2021AB17045AB21220027);国家重点研发计划(2018YFB1502103;2018YFB1502105;2022YFB4003200);广西八桂学者基金;桂林漓江学者基金;广西新能源与新材料结构与性能协同创新中心;广西先进功能材料基础与应用人才小高地;桂林市科学研究与技术开发项目(20210102-4);广西信息材料重点实验室(201001);广西植物功能物质可持续利用重点实验室(FPRU2022-4)
通讯作者:  *孙立贤,博士,桂林电子科技大学材料科学与工程学院博/硕士研究生导师。目前主要从事制/储氢材料、相变储热材料、超级电容器电极材料、传感材料、机器学习等方面的研究工作。sunlx@guet.edu.cn;
徐芬,博士,桂林电子科技大学材料科学与工程学院博/硕士研究生导师。目前主要从事制/储氢材料、相变储热材料、超级电容器电极材料、传感材料等方面的研究工作。xufen@guet.edu.cn   
作者简介:  吴学虎,桂林电子科技大学材料科学与工程学院硕士研究生,在孙立贤教授、徐芬教授的指导下进行研究。主要研究领域为超级电容器电极材料的制备及性能。
引用本文:    
吴学虎, 孙立贤, 徐芬, 李彬, 方淞文, 张靖, 陈翔, 宋领君, 卢俊铭, 高源, 杜毛湛, 徐如丹. 具有P和S双空位的镍钴纳米花复合材料用作超级电容器电极的研究[J]. 材料导报, 2025, 39(7): 24030138-7.
WU Xuehu, SUN Lixian, XU Fen, LI Bin, FANG Songwen, ZHANG Jing, CHEN Xiang, SONG Lingjun, LU Junming, GAO Yuan, DU Maozhan, XU Rudan. A Study on Nickel-Cobalt Nanoflower Composite Materials with P and S Double Vacancies as Supercapacitor Electrodes. Materials Reports, 2025, 39(7): 24030138-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030138  或          https://www.mater-rep.com/CN/Y2025/V39/I7/24030138
1 Pang Z H, Qiao Z J, Lei Y W, et al. Materials Reports, 2022, 36(S2), 9 (in Chinese).
庞志恒, 乔志军, 雷贻文, 等. 材料导报, 2022, 36(S2), 9.
2 Zhang Y F. Materials Reports, 2023, 37(S2), 29 (in Chinese).
张亚飞. 材料导报, 2023, 37(S2), 29.
3 Zhang W L, Ran F. Materials Reports, 2020, 34(12), 12010 (in Chinese).
张文林, 冉奋. 材料导报, 2020, 34(12), 12010.
4 Liu R, Xu S, Shao X, et al. ACS Applied Materials & Interfaces, 2021, 13(40), 47717.
5 Sun Y M, Yi R H, Duan J Q, et al. Materials Reports, 2021, 35(16), 16001 (in Chinese).
孙义民, 易荣华, 段纪青, 等. 材料导报, 2021, 35(16), 16001.
6 Chen H, Jiang S, Xu B, et al. Journal of Materials Chemistry A, 2019, 7(11), 6241.
7 Zhao Y H, He X Y, Chen R R, et al. Chemical Engineering Journal, 2018, 352, 29.
8 Yi T F, Pan J J, Wei T T, Nano Today, 2020, 33, 100894.
9 Li L Q, Dai Z Y, Zhang Y F, et al. RSC Advances, 2015, 5(101), 83408.
10 Lu X F, Zhang S L, Gao S Y, et al. Angewandte Chemie, 2021, 133(42), 23067.
11 Peng Z W, Yang C, Hu Y Z, et al. Applied Surface Science A, 2022, 573, 151561.
12 Li L, Song L L, Zhang X Y, et al. ACS Applied Energy Materials, 2022, 5(2), 2505.
13 Lin J H, Wang Y H, Zheng X H, et al. Dalton Transactions, 2018, 47(26), 8771.
14 Tan S W, Xue Z G, Tao K, et al. Chemical Communications, 2022, 58(42), 6243.
15 Salunkhe R R, Tang J, Kamachi Y, et al. Journal of the American Che-mical Society , 2015, 9(6), 6288.
16 Wei X J, Li Y H, Peng Y H, et al. Chemical Engineering Journal, 2019, 355, 336.
17 Lu F, Zhou M, Li W R, et al, Nano Energy, 2016, 26, 313.
18 Zhang X, Lu W, Tian Y H, et al. Journal of Colloid and Interface Science, 2022, 606, 1120.
19 Chen X H, Li Q, Che Q J, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(13), 11778.
20 Yu X W, Zhao J, Johnsson M, et al. Advanced Functional Materials, 2021, 31(25), 2101578.
21 Liang H F, Xia C, Jiang Q, et al. Nano Energy, 2017, 35, 331.
22 Baig M M, Khan M A, Gul I H, et al. Journal of Electronic Materials, 2023, 52, 5775.
23 Wang G R, Jin Z L, Zhang W X. Journal of Colloid and Interface Science, 2020, 577, 115.
24 Mao X Q, Zou Y J, Liang J, et al. Ceramics International, 2020, 46(2), 1448.
25 Zhao Y Y, Zhang P, Fu W B, et al. Applied Surface Science, 2017, 416, 160.
26 Lin J H, Zhong Z X, Wang H H, et al. Journal of Power Sources, 2018, 407, 6.
27 He X Y, Li R M, Liu J Y, et al. Chemical Engineering Journal, 2018, 334, 1573.
28 Su J H, Zhang Y, Lu M, et al. Journal of Alloys and Compounds, 2023, 957, 170387.
29 Li G F, Song B, Cui X, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(3), 1687.
30 Tang J B, Huang W X, Lv X, et al. Nanotechnology, 2020, 32, 085604.
31 Shinde S K, Jalak M B, Ghodake G S, et al. Ceramics International, 2019, 45, 17192.
32 Huang Y X, Cheng M, Xiang Z C, et al. Royal Society Open Science, 2018, 5, 180953.
33 Wang H Y, Liang M M, He Z M, et al. Current Applied Physics, 2022, 35, 7.
34 Liu G X, Zhang H Y, Li J, et al. Journal of Materials Science, 2019, 54, 9666.
35 Yang H Y, Guo R S, Jin L H, et al. Journal of Materials Science:Materials in Electronics, 2023, 34, 2274.
[1] 周乃吉, 吴修胜, 温红娟, 施思嘉, 曹菊芳. 增强钛酸铋钠基陶瓷储能研究进展[J]. 材料导报, 2025, 39(6): 24010096-17.
[2] 李门, 李天鹏, 郭爱强, 刘建国, 高欣宝. vG和Cu/vG体系对H2O吸附的第一性原理研究[J]. 材料导报, 2025, 39(6): 23120052-5.
[3] 李雷, 孙东旭, 柴玉莹, 谢飞, 吴明. 剥离涂层下含缺陷管道腐蚀规律的瞬态数值模拟研究[J]. 材料导报, 2025, 39(5): 23010094-9.
[4] 韦浪浪, 田秀刚, 梁健, 苗斌, 杨峰, 李扬, 郑士建. 基于聚焦离子束切割制样的热镀锌汽车钢板漏镀缺陷结构表征与成因分析[J]. 材料导报, 2025, 39(4): 23080246-7.
[5] 郭洪兵, 刘曰利. 基于Cs4PbBr6纳米晶的超高灵敏度电阻型湿敏传感器[J]. 材料导报, 2025, 39(3): 24040002-7.
[6] 孙斐, 赵洪峰, 缪奎. 钆掺杂的高非线性和低漏流SnO2基压敏电阻材料[J]. 材料导报, 2025, 39(2): 23110256-4.
[7] 张霞, 吴瑛, 袁牧锋, 王春栋. MOFs衍生物在尿素氧化中的研究进展[J]. 材料导报, 2024, 38(6): 23020193-10.
[8] 陈艳丽, 解自奇, 王梦真, 马子晗, 李姗姗, 颜文超, 李法强. 基于缺陷工程改性富锂层状材料的研究现状[J]. 材料导报, 2024, 38(4): 22070108-9.
[9] 季雪梅, 郝驰, 朱秀梅, 苏江滨, 何祖明, 唐斌, 朱贤方. 二硫化钼在电子束辐照下的缺陷结构演变及其物理机制研究进展[J]. 材料导报, 2024, 38(3): 22070109-11.
[10] 周翔, 李太, 黄振玲, 赵亮, 康家铭, 李绍元, 任永生, 马文会, 吕国强. 大尺寸直拉法单晶硅生长过程中晶体缺陷的研究进展[J]. 材料导报, 2024, 38(24): 23100030-9.
[11] 苗瑞霞, 张德栋, 谢妙春, 王业飞, 杨小峰. 本征缺陷对δ-InSe光电性质的影响[J]. 材料导报, 2024, 38(23): 23080234-7.
[12] 耿鑫悦, 杭高庆, 欧长良, 杨小燕. 含孤立四面体基元的AMO4型质子导体的研究进展[J]. 材料导报, 2024, 38(22): 23100129-7.
[13] 何永才, 丁蕾, 杨莹, 刘江, 何博, 张永哲, 严辉, 徐希翔. 基于丁二胺盐酸盐钝化的高效钙钛矿/晶硅叠层电池[J]. 材料导报, 2024, 38(20): 23070073-4.
[14] 韩赛斌, 胡秀飞, 王英楠, 王子昂, 张晓宇, 彭燕, 葛磊, 徐明升, 徐现刚, 冯志红. 金刚石单晶中的位错及其对器件影响的研究进展[J]. 材料导报, 2024, 38(20): 23100241-14.
[15] 王慧鹏, 蔡冬威, 董丽虹, 林恩, 王海斗. 材料亚表面/表面缺陷锁相红外热成像检测研究现状与趋势[J]. 材料导报, 2024, 38(18): 23020112-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed