Please wait a minute...
材料导报  2025, Vol. 39 Issue (4): 23120263-7    https://doi.org/10.11896/cldb.23120263
  金属与金属基复合材料 |
激光熔覆Inconel 625合金高温高应变率下的力学行为及本构模型
雷经发1,2, 赵晨霞1, 刘涛1,2,*, 沈朝阳1, 李思悦1
1 安徽建筑大学机械与电气工程学院,合肥 230601
2 工程机械智能制造安徽省教育厅重点实验室,合肥 230601
Mechanical Properties and Constitutive Model of Laser Cladding Inconel 625 Alloy at High Temperatures and High Strain Rates
LEI Jingfa1,2, ZHAO Chenxia1, LIU Tao1,2,*, SHEN Zhaoyang1, LI Siyue1
1 School of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei 230601, China
2 Anhui Education Department Key Laboratory of Intelligent Manufacturing of Construction Machinery, Hefei 230601, China
下载:  全 文 ( PDF ) ( 11644KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究激光熔覆Inconel 625(IN625)合金在高温高应变率下的力学行为,制备激光熔覆IN625合金试样,获取了试样在四种温度(25 ℃,600 ℃,800 ℃,1 000 ℃)和三种应变率(1 000 s-1,2 000 s-1,3 000 s-1)下的压缩应力-应变曲线,并构建了适用的本构模型。结果表明:激光熔覆IN625合金在四种温度和三种应变率下的应力-应变曲线均存在弹性和塑性阶段。在各温度下,材料的屈服强度和流动应力均随着应变率的增加而增大,表现出明显的应变率强化效应。在各加载应变率下,材料的流动应力和屈服强度均随着温度的升高而降低,表现出显著的温度软化效应。基于应力-应变数据,以Johnson-Cook(J-C)本构模型为基础,通过温度软化指数和应变率敏感系数拟合对模型进行修正,结果表明,模型拟合值与实验结果吻合较好,可准确地描述材料的力学行为。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
雷经发
赵晨霞
刘涛
沈朝阳
李思悦
关键词:  激光熔覆  IN625合金  高温高应变率  力学行为  本构模型    
Abstract: In order toinvestigate the mechanical behavior of laser cladding Inconel 625 (IN625) alloy at high temperature and high strain rate, laser cladding IN625 alloy samples were prepared, the compressive stress-strain curves of the samples were obtained at four temperatures (25 ℃, 600 ℃, 800 ℃, 1 000 ℃) and three strain rates (1 000 s-1, 2 000 s-1, 3 000 s-1), and an applicable constitutive model was constructed. The results show that the stress-strain curves of laser cladding IN625 alloy exhibited elastic and plastic stages at four temperatures and three strain rates. At various temperatures, the yield strength and flow stress of the material increased with the increase of strain rate, exhibiting a significant strain rate strengthening effect. At various loading strain rates, the flow stress and yield strength of the material decreased with increasing tempe-rature, representing a significant temperature softening effect. Based on stress-strain data and Johnson-Cook (J-C) constitutive model, the model was modified by fitting the temperature softening index and strain rate sensitivity coefficient. The fitted values of the model were in good agreement with the experimental results, accurately describing the mechanical behavior of the material.
Key words:  laser cladding    IN625 alloy    high temperature and high strain rate    mechanical property    constitutive model
出版日期:  2025-02-25      发布日期:  2025-02-18
ZTFLH:  O347.3  
基金资助: 安徽省高等学校自然科学研究重大项目(KJ2021ZD0068;2023AH040036);安徽高校协同创新项目(GXXT-2023-025)
通讯作者:  *刘涛,博士,安徽建筑大学机械与电气工程学院副教授、硕士研究生导师。目前主要从事材料动态力学性能测试、无损检测等方面的研究。liutao19841015@163.com   
作者简介:  雷经发,博士,安徽建筑大学机械与电气工程学院教授、硕士研究生导师。目前主要从事材料动态力学性能测试、机器视觉检测等方面的研究。
引用本文:    
雷经发, 赵晨霞, 刘涛, 沈朝阳, 李思悦. 激光熔覆Inconel 625合金高温高应变率下的力学行为及本构模型[J]. 材料导报, 2025, 39(4): 23120263-7.
LEI Jingfa, ZHAO Chenxia, LIU Tao, SHEN Zhaoyang, LI Siyue. Mechanical Properties and Constitutive Model of Laser Cladding Inconel 625 Alloy at High Temperatures and High Strain Rates. Materials Reports, 2025, 39(4): 23120263-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23120263  或          https://www.mater-rep.com/CN/Y2025/V39/I4/23120263
1 Dinda G P, Dasdupta A K, Mazumder J. Materials Science and Enginee-ring: A, 2009, 509, 98.
2 Badiger R I, Narendranath S, Srinath M S. Journal of Manufacturing Processes, 2015, 18, 117.
3 Ramkumar K D, Abraham W S, Viyash V, et al. Journal of Manufacturing Processes, 2017, 25, 306.
4 Pavithra E, Senthil V S. Journal of Alloys and Compounds, 2016, 669, 199.
5 Liu Y A, Ding Y, Yang L J, et al. Journal of Manufacturing Processes, 2021, 66, 341.
6 Xu Z L, Xie Y J, Ebrahimnia M, et al. Surface and Coatings Technology, 2021, 416, 127154.
7 Maj P, Zdunek J, Mizera J, et al. Metals and Materials International, 2017, 23(1), 54.
8 Wang X Y, Huang C Z, Zou B, et al. Materials Science and Enginee-ring: A, 2013, 580, 385.
9 Azarbarmas M, Aghaie K M, Cabrera J M, et al. Materials & Design, 2016, 94(2), 28.
10 Liu E L, Xing H W, Wang M M, et al. The Chinese Journal of Nonferrous Metals, 2018, 28(4), 732 (in Chinese).
刘二亮, 邢宏伟, 王明明, 等. 中国有色金属学报, 2018, 28(4), 732.
11 Chen F L, Li K D, Tang B, et al. Metals, 2021, 11(5), 824.
12 Liu X D, Fan J K, Li K D, et al. Journal of Alloys and Compounds, 2021, 881, 160648.
13 Yuan K B, Guo W G, Li P H, et al. Materials Science and Engineering: A, 2018, 721, 215.
14 Leary M, Mazur M, Williams H, et al. Materials & Design, 2018, 157, 179.
15 Parizia S, Marchese G, Rashidi M, et al. Journal of Alloys and Compounds, 2020, 864, 156418.
16 Koutiri I, Pessard E, Peyre P, et al. Journal of Materials Processing Technology, 2018, 255, 536.
17 Pleass C, Jothi S. Additive Manufacturing, 2018, 24, 419.
18 Wang X, Luo G Q, Sun Y, et al. Materials Science and Engineering: A, 2023, 886, 145391.
19 Afshari M, Hamzekolaei G, Mohammadi N, et al. Materials Today Communications, 2023, 35, 106329.
20 Le W, Chen Z, Naseem S, et al. Vacuum, 2023, 209, 111799.
21 Tian X H, Yan K C, Zhao J, et al. China Mechanical Engineering, 2022, 33(7), 872 (in Chinese).
田宪华, 闫奎呈, 赵军, 等. 中国机械工程, 2022, 33(7), 872.
22 Hui X L, Mu R K, Bai C Y, et al. Journal of Vibration and Shock, 2016, 35(22), 161 (in Chinese).
惠旭龙, 牟让科, 白春玉, 等. 振动与冲击, 2016, 35(22), 161.
23 Huang X C, Hu W J. In: Proceedings of the 6th National Conference on Experimental Technique of explosion mechanics. Changsha, 2010, pp. 308 (in Chinese).
黄西成, 胡文军. 第六届全国爆炸力学实验技术学术会议论文集. 长沙, 2010, pp. 308.
[1] 郭维诚, 吴杰, 郭淼现, 孙启梦. SiCp/Al超低温材料流动行为和本构模型构建[J]. 材料导报, 2025, 39(4): 23110133-8.
[2] 张泽疆, 李新梅, 朱春金, 李航, 杨定力. 纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2025, 39(3): 23090210-9.
[3] 敬彬, 胡文军, 陶俊林. Taylor撞击实验及其应用研究进展[J]. 材料导报, 2025, 39(2): 23100210-10.
[4] 李冲, 晏阳阳, 杨祯彧, 宋德军, 胡伟民, 杨胜利, 田世伟, 江海涛. TA24合金多道次热变形行为及管材制备仿真[J]. 材料导报, 2025, 39(2): 23120078-7.
[5] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[6] 孙涛, 王辉, 张蕾, 刘晓英, 赵宏刚, 蒋伟, 成鑫磊, 何小涌. 基于折减因子的奥氏体不锈钢螺栓高温应力-应变模型[J]. 材料导报, 2024, 38(5): 23080049-9.
[7] 柯松, 陈卓坤, 艾诚, 李尧, 虢婷, 孙志平. 非晶合金薄膜的复合强韧化研究进展[J]. 材料导报, 2024, 38(5): 22090022-9.
[8] 张超, 潘旺, 方宏远, 王娟, 王翠霞, 杜明瑞, 赵鹏, 王磊, 王复明. 聚氨酯泡沫注浆修复材料泡孔结构特征及抗压性能研究进展[J]. 材料导报, 2024, 38(3): 22070007-14.
[9] 谢晓明, 沈鹰, 刘秀波, 朱正兴, 李明曦. Mn含量对激光熔覆FeCoCrNiMnx高熵合金涂层高温摩擦学性能的影响[J]. 材料导报, 2024, 38(23): 23120066-9.
[10] 崔涛涛, 宁宝宽, 郜殿伟, 夏旭东. 混杂纤维高强轻骨料混凝土单轴受压试验研究[J]. 材料导报, 2024, 38(2): 22040204-6.
[11] 舒林森, 张粲东, 于鹤龙, 张朝铭. 激光熔覆原位Ti-C-B-Al复合涂层的结构特征与力学性能[J]. 材料导报, 2024, 38(2): 22080162-5.
[12] 张志强, 杨倩, 于子鸣, 张天刚, 路学成, 王浩. 激光功率对Ti6Al4V/NiCr-Cr3C2熔覆层宏微观组织及性能的影响[J]. 材料导报, 2024, 38(2): 22100243-7.
[13] 刘春泉, 熊芬, 彭龙生, 黄伟, 林英华. 超高速激光熔覆技术的最新研究进展:关键技术特点及优势,设备研发及其技术参数[J]. 材料导报, 2024, 38(17): 23020075-19.
[14] 宁晨红, 高硕洪, 郑江鹏, 王枭, 杨军红, 苏允海, 刘敏, 闫星辰. 蓝光激光熔覆纯铜覆层的组织及性能[J]. 材料导报, 2024, 38(17): 23040078-7.
[15] 李占明, 王宏宇, 孙晓峰, 王梦璐, 王瑞, 宋巍. 超声振动在激光熔覆中的作用机制及研究进展[J]. 材料导报, 2024, 38(16): 23040040-8.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed