Please wait a minute...
材料导报  2025, Vol. 39 Issue (4): 23120032-8    https://doi.org/10.11896/cldb.23120032
  金属与金属基复合材料 |
轧制态7050铝合金双道次热变形微观组织演变
姚未怡, 卜恒勇*
昆明理工大学材料科学与工程学院,昆明 650093
Microstructure Evolution of Rolled 7050 Aluminum Alloy During Double-pass Hot Deformation
YAO Weiyi, BU Hengyong*
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
下载:  全 文 ( PDF ) ( 36622KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 7000系铝合金因具备低密度、高强和高韧等优点而备受关注,工业中可通过多道次热变形来提升合金的综合性能,要获得接近理想状态下的铝合金性能,必须掌握多道次热变形工艺参数对组织演变造成的影响。本实验采用TA DIL 805D动态淬火热膨胀仪对7050铝合金进行等温热压缩,研究了变形温度、道次间隔时间和首应变对热压缩后的7050铝合金在流变应力、静态和动态软化机制、第二相及织构方面的影响,其中变形温度为360、400 ℃,应变速率为0.05 s-1,间隔时间为10、100 s,首道次应变量分别为0.2、0.4、0.6、0.8和1.0,总应变1.1。结果表明:7050铝合金在双道次热变形过程中发生了动态和静态软化,静态和动态软化机制都是再结晶。提高变形温度会促进再结晶进程,形成较强的P织构,首应变增加,动态软化效果显著,有利于动态再结晶,并且出现cube和R-cube织构,强度随首应变增大而加强。延长道次间隔时间会使织构大量聚集在α-取向线上。另外,合金经过热压缩后存在部分不溶相,但是不溶相的数量与分布与变形条件无关。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚未怡
卜恒勇
关键词:  7050铝合金  双道次热变形  流变应力  微观组织  第二相  织构    
Abstract: 7000 series aluminum alloys have attracted much attention due to their advantages such as low density, high strength, andhigh toughness. The alloy’s comprehensive performance can be enhanced through double-pass hot deformation in industry. To obtain the properties of aluminum alloy close to the ideal state, it is necessary to grasp the influence of double-pass hot deformation process parameters on the microstructure evolution. In this work, isothermal hot compression of 7050 aluminum alloy was carried out using TA DIL 805D thermomechanical machine. The predefined temperatures were 360 and 400 ℃, the strain rate was 0.05 s-1, the interval time was 10 and 100 s, the first-pass strains were 0.2, 0.4, 0.6, 0.8 and 1.0, and the total strain was 1.1. The effects of deformation temperature, interpass time and first-pass strain on the flow stress, static and dynamic softening mechanisms, second phase and texture of 7050 aluminum alloy were studied. The results show that dynamic and static softening mechanisms occurred in 7050 aluminum alloy during double-pass hot deformation, and both mechanisms were recrystallized. With the increase of deformation temperature, the recrystallization process is accelerated, and a strong P texture is formed, the first-pass strain increases, and the dynamic softening effect will sharply increase, which is beneficial for dynamic recrystallization. The cube and R-cube textures appear, and the strength increases with the increase of the first-pass strain. The increase of the interpass time results in a large amount of texture accumulating on the α-orientation line. In addition, some insoluble phases were found in the alloy after hot compression, but their number and distribution were independent of the deformation conditions.
Key words:  7050 aluminum alloy    double-pass deformation    flow stress    microstructure    second-phase    texture
出版日期:  2025-02-25      发布日期:  2025-02-18
ZTFLH:  TG146.2  
基金资助: 云南省科技厅重点研发计划(202103AA080017)
通讯作者:  *卜恒勇,昆明理工大学材料科学与工程学院正高级工程师、硕士研究生导师。目前主要从事金属材料加工集成计算材料工程研究等方面的研究工作。buhengyong@kust.edu.cn   
作者简介:  姚未怡,现为昆明理工大学材料科学与工程学院硕士研究生,跟随导师卜恒勇进行研究工作。目前主要研究领域为铝合金热变形。
引用本文:    
姚未怡, 卜恒勇. 轧制态7050铝合金双道次热变形微观组织演变[J]. 材料导报, 2025, 39(4): 23120032-8.
YAO Weiyi, BU Hengyong. Microstructure Evolution of Rolled 7050 Aluminum Alloy During Double-pass Hot Deformation. Materials Reports, 2025, 39(4): 23120032-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23120032  或          https://www.mater-rep.com/CN/Y2025/V39/I4/23120032
1 Mukhopadhyay A. Metals Materials and Processes, 2007, 119(1), 1.
2 Warner T. Materials Science Forum, 2006, 519-521, 1271.
3 Robson J. Materials Science and Engineering A, 2004, 382, 112.
4 Ding S, Khan S A, Yanagimoto J. Materials Science and Engineering A, 2021, 822, 141673.
5 Zhang T, Lu S H, Zhang J B, Li Z F, et al. Materials Science and Engineering, 2017, 25(6), 065005.
6 Zhang R Y, Zhao G Y, Yu H, et al. Materials Science and Engineering, 2019, 611, 012003.
7 Jiang F L, Zhang H, Li L X, et al. Materials Science and Engineering A, 2012, 552, 269.
8 Lin Q Q, Peng D S, Zhang H, et al. Journal of Central South University (Science and Technology), 2005, 36(2), 183 (in Chinese).
林启权, 彭大暑, 张辉, 等. 中南大学学报(自然科学版), 2005, 36(2), 183.
9 Jiang F L, Zhang H, Meng C B, et al. Transactions of Materials and Heat Treatment, 2011, 32(3), 52 (in Chinese).
蒋福林, 张辉, 蒙春标, 等. 材料热处理学报, 2011, 32(3), 52.
10 Li Y. Aluminum Fabrication, 2014(3), 9 (in Chinese).
黎勇. 铝加工, 2014(3), 9.
11 Wang G, Tian C L, Kou L Y, et al. Heat Treatment of Metals, 2020, 45(5), 23 (in Chinese).
王冠, 田昌龄, 寇琳媛, 等. 金属热处理, 2020, 45(5), 23.
12 Li C, Li Z H, Huang S H, et al. Transactions of Materials and Heat Treatment, 2015, 36(12), 55 (in Chinese).
李晨, 李志辉, 黄树晖, 等. 材料热处理学报, 2015, 36(12), 55.
13 Chen Y, Zhao G, Liu C M, et al. Journal of Northeastern University (Natural Science), 2006, 27(1), 41 (in Chinese).
陈扬, 赵刚, 刘春明, 等. 东北大学学报(自然科学版), 2006, 27(1), 41.
14 Liu G J, Zhang H, Lin G Y, et al. Hot Working Technology, 2002, 6(6), 13 (in Chinese).
刘国金, 张辉, 林高用, 等. 热加工工艺, 2002, 6(6), 13.
15 Zhang K, Zhao X D, Chen H Q, et al. Journal of Aeronautical Materials, 2017, 37(3), 37 (in Chinese).
张坤, 赵晓东, 陈慧琴, 等. 航空材料学报, 2017, 37(3), 37.
16 Chen C. Effect of two-pass compression on microstructure and properties of 050 aluminum alloy. Master’s Thesis, Hunan University, China, 2021 (in Chinese).
陈诚. 双道次压缩对7050铝合金组织性能影响研究. 硕士学位论文, 湖南大学, 2021.
17 Tian C L. Study on double-pass hot deformation and microstructure evolution of aluminum alloy. Master’s Thesis, Ningxia University, China, 2019 (in Chinese).
田昌龄. 铝合金多道次热变形及组织演变研究. 硕士学位论文, 宁夏大学, 2019.
18 Chen M Y. Static softening behavior and microstructure evolution of high strength aluminum alloy during hot processing. Master’s Thesis, Taiyuan University, China, 2015 (in Chinese).
陈明义. 高强铝合金热加工静态软化行为与组织演变. 硕士学位论文, 太原科技大学, 2015.
19 Xiao G, Li F L, Guo P C, et al. Journal of Plasticity Engineering, 2021, 28(7), 31 (in Chinese).
肖罡, 李飞龙, 郭鹏程, 等. 塑性工程学报, 2021, 28(7), 31.
20 Yan L J. Influence of hot rolling on microstructure, texture and mechanical properties of Al-Zn-Mg-Cu alloy. Master’s Thesis, Northeastern University, China, 2017 (in Chinese).
颜利君. 热轧对超高强Al-Zn-Mg-Cu合金组织、织构及性能的影响. 硕士学位论文, 东北大学, 2017.
21 Xu C C, He H, Xue Z G, et al. Materials Characterization, 2021, 171, 110801.
22 Wang X K, Xiao D H, Wu M D, et al. Journal of Materials Research and Technology, 2021, 15, 4516.
23 Zeng X, Fan X G, Lia H W, et al. Materials Science and Engineering A, 2019, 760, 328.
24 Wu H, Wen S P, Huang H, et al. Materials Science and Engineering A, 2016, 651, 415.
25 Li Y L. Effect of accumulative roll bonding and aging heat treatment on microstructure and properties of 6061 alloy. Master’s Thesis, Hunan University of Technology, China, 2023 (in Chinese).
李林艳. 累积叠轧及时效热处理对6061铝合金组织与性能的影响. 硕士学位论文, 湖南工业大学, 2023.
26 Xiong C X, Deng Y L, Wan L, et al. The Chinese Journal of Nonferrous Metals, 2010, 20(3), 427 (in Chinese).
熊创贤, 邓运来, 万里, 等. 中国有色金属学报, 2010, 20(3), 427.
27 Zhang X M, Han J P, Liu S D, et al. Journal of Central South University (Science and Technology), 2012, 43(9), 3386 (in Chinese).
张新明, 韩建鹏, 刘胜胆, 等. 中南大学学报(自然科学版), 2012, 43(9), 3386.
28 Sidor J J, Petrov R H, Kestens L A I. Materials Characterization, 2011, 62(2), 228.
29 Sidor J, Miroux A, Petrov R H, et al. Acta Materialia, 2008, 56(11), 2495.
30 Yu J H. Research on high strain rate deformation behavior of 6016-T4 aluminum alloy sheet. Master’s Thesis, Shenyang University of Technology, China, 2021 (in Chinese).
于佳卉. 6016-T4铝合金板材高应变速率变形行为研究. 硕士学位论文, 沈阳工业大学, 2021.
31 Huang Z H. Study on microstructure and properties of 6082 aluminum alloy prepared by hot extrusion. Master’s Thesis, South China University of Technology, China, 2021 (in Chinese).
黄哲浩. 6082 铝合金热挤压工艺及其材料的组织与性能研究. 硕士学位论文, 华南理工大学, 2022.
32 Xua S C, Wang L D, Zhao P T, et al. Materials Science and Engineering A, 2011, 528(7), 3243.
33 Yuan H, Wang Q F, Zhang J W, et al. Journal of Alloys and Compounds, 2011, 509(3), 922.
34 Zdunek J, Adamczyk-Cieslak B, Koralnik M, et al. Journal of Manufacturing Processes, 2019, 47, 254.
35 Cui Y J. Influence of hot rolling on microstructure, texture and mechanical properties of 7N01 aluminium alloy. Master’s Thesis, Northeastern University, China, 2017 (in Chinese).
崔元钧. 热轧对7N01铝合金组织、织构及性能的影响. 硕士学位论文, 东北大学, 2017.
36 Qiu Q Q, Wu W, Yuan Y Y, et al. Transactions of Materials and Heat Treatment, 2024, 45(1), 62 (in Chinese).
邱铨强, 吴蔚, 袁悠悠, 等. 材料热处理学报, 2024, 45(1), 62.
37 Liao M S, Zhang X. Aluminum Fabrication, 2023(5), 34 (in Chinese).
廖明顺, 张昕. 铝加工, 2023(5), 34.
38 Couret A, Caillard D. Acta Metallurgica, 1988, 36(9), 2515.
[1] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[2] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[3] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[4] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[5] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[6] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[7] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[8] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[9] 李娜, 丁西安, 王永强, 陆勤阳, 郑成思. Cu对含Ce高强高效无取向硅钢磁性能的影响[J]. 材料导报, 2024, 38(6): 22100266-7.
[10] 范航航, 刘飞, 郑亦玮, 白朴存, 崔晓明, 王海波, 靳亮. Li/Sc复合添加对铸态Al-Cu-Mg铝合金微观组织和硬度的影响规律[J]. 材料导报, 2024, 38(24): 23090211-7.
[11] 朱轩,杨晓益, 陆鑫, 杨书汉. 电弧脉冲对6005A-T6铝合金CMT-P焊接接头组织和性能的影响[J]. 材料导报, 2024, 38(23): 23090035-7.
[12] 王沛锦, 卓家乐, 艾桃桃, 董洪峰. L12型纳米有序相析出强化(FeNiCoCr)93Al5Ti2高熵合金[J]. 材料导报, 2024, 38(22): 23110207-5.
[13] 张志强, 杨倩, 于子鸣, 张天刚, 路学成, 王浩. 激光功率对Ti6Al4V/NiCr-Cr3C2熔覆层宏微观组织及性能的影响[J]. 材料导报, 2024, 38(2): 22100243-7.
[14] 郭伟玲, 邢志国, 李鹏, 马国政, 王海斗. 冷喷涂铜基复合涂层及后处理技术的研究现状[J]. 材料导报, 2024, 38(19): 23010049-13.
[15] 杨贵荣, 宋文明, 许可, 马颖. CeO2对WC/Ni复合熔覆层微观组织与性能的影响[J]. 材料导报, 2024, 38(19): 23070014-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed