Please wait a minute...
材料导报  2025, Vol. 39 Issue (4): 23120006-6    https://doi.org/10.11896/cldb.23120006
  无机非金属及其复合材料 |
氯化锂溶液中钾离子的吸附去除研究
李志录1,2, 王敏1,2,*
1 中国科学院青海盐湖研究所,盐湖资源绿色高值利用重点实验室,西宁 810018
2 青海省盐湖资源化学重点实验室,西宁 810018
Study on Adsorption and Removal of Potassium Ions from Lithium Chloride Solution
LI Zhilu1,2, WANG Min1,2,*
1 Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810018, China
2 Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Xining 810018, China
下载:  全 文 ( PDF ) ( 23428KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 锂盐产品的纯度影响其经济价值和实际应用,因此将制备的吸附剂应用于高浓度氯化锂溶液中钾离子的吸附去除对锂盐产品的提纯具有较大的意义。采用水热法和喷雾干燥法分别制得具有钾吸附能力的沸石粉体吸附剂和微颗粒吸附剂,然后探究其在含有钾杂质的锂溶液中的静态吸附性能和动态吸附性能。同时为更好地探究吸附过程机制,采用吸附方程描述和分析动力学过程,并考察吸附脱附循环过程中吸附剂的溶损。结果表明,制备的沸石分子筛粉体和颗粒具有良好的吸附性能,颗粒吸附剂静态吸附饱和容量可达到32 mg/g,而动态吸附过程的吸附饱和容量为21 mg/g,并且在吸附过程中吸附剂对K+具有良好的选择性。进一步采用吸附方程拟合动力学模型时发现二级吸附模型具有更好的拟合相关性,拟合相关系数R2>0.999,同时吸附剂具有较低的溶损量。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李志录
王敏
关键词:  锂盐产品提纯  吸附分离  K+去除  动态吸附  沸石分子筛    
Abstract: The purity of lithium products affects its economic value and practical application, so it is of great significance to apply the prepared adsorbent to the adsorption and removal of potassium ions in lithium chloride high concentration. This work used hydrothermal method and spray drying method to prepare zeolite powder adsorbent and microparticle adsorbent with potassium adsorption ability, respectively, and then investigated their static adsorption and dynamic adsorption performance in lithium solution containing potassium impurities. Meanwhile, in order to better explore the adsorption process, the adsorption equations were used to describe and analyze the kinetic process, and the dissolution loss of the adsorbent during the adsorption and desorption cycle was investigated. The results showed that the prepared zeolite powders and particles contained good static adsorption performance. The static adsorption capacity of the particle adsorbent can reach 32 mg/g, and the adsorption saturation capacity according to the dynamic adsorption process was 21 mg/g and the adsorbent contributed good selectivity for K+ in the adsorption process. When the adsorption equation was used to fit the kinetic model, it was found that the second-order adsorption model had a better fitting correlation coefficient (R2>0.999) and the adsorbent had a low dissolution loss.
Key words:  purification of lithium salt products    adsorption and separation    K+ removal    dynamic adsorption    zeolite molecular sieve
出版日期:  2025-02-25      发布日期:  2025-02-18
ZTFLH:  TQ131.1  
基金资助: 国家自然科学基金(U20A20138)
通讯作者:  *王敏,中国科学院青海盐湖研究所研究员、学术委员会主任、博士研究生导师。目前主要从事盐湖钾、锂、硼、镁资源综合开发利用及产业化研究。wangmin@isl.ac.cn   
作者简介:  李志录,中国科学院青海盐湖研究所工程师,在王敏研究员的指导下进行研究。目前主要研究领域为盐湖资源高效分离。
引用本文:    
李志录, 王敏. 氯化锂溶液中钾离子的吸附去除研究[J]. 材料导报, 2025, 39(4): 23120006-6.
LI Zhilu, WANG Min. Study on Adsorption and Removal of Potassium Ions from Lithium Chloride Solution. Materials Reports, 2025, 39(4): 23120006-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23120006  或          https://www.mater-rep.com/CN/Y2025/V39/I4/23120006
1 Li H, Eksteen J, Kuang G. Hydrometallurgy, 2019, 189, 105129.
2 Sun Y, Wang Q, Wang Y, et al. Separation and Purification Technology, 2021, 256, 117807.
3 Xu P, Hong J, Qian X, et al. Journal of Materials Science, 2021, 56, 16.
4 Song P, Xiang R. Acta Geologica Sinica (English Edition), 2014, 88 (S1), 371.
5 Bian S, Li D, Gao D, Peng J, et al. Hydrometallurgy, 2017, 173, 80.
6 Zhou Y, Li L, Wu Z, et al. Progress in Chemistry, 2013, 25(10), 12 (in Chinese).
周园, 李丽娟, 吴志坚, 等. 化学进展, 2013, 25(10), 12.
7 Kielland J. D. E. patent, DE691366, 1940.
8 韩海生, 王宇峰, 孙伟, 等. 中国专利, CN114797768A, 2022.
9 Yuan J. Research on fundamentals in the technology of extracting potash from seawater by ion exchange method. Ph. D. Thesis, Tianjing university, China, 2006 (in Chinese).
袁俊生. 离子交换法海水提钾技术的应用基础研究. 博士学位论文, 天津大学, 2006.
10 Zhai Q, Song Y, Liu R, et al. Separation and Purification Technology, 2023, 322, 124283.
11 Ling R, Chen W, Hou J. Particuology, 2018, 36, 190.
12 Lu Y. Studies on the synthesis of high capability potassium adsorbent. Master’s Thesis, Hebei University of Technology, China, 2005 (in Chinese).
卢亚哲. 钾离子高效吸附剂的合成研究. 硕士学位论文, 河北工业大学, 2005.
13 Klumpp M, Zeng L, Al-Thabaiti S, et al. Microporous and Mesoporous Materials, 2016, 229, 155.
14 Liu Y, Wang L, Zhang J, et al. Research on Chemical Intermediates, 2011, 37, 949.
15 Smeets V, Baaziz W, Ersen O, et al. Chemical Science, 2020, 11, 954.
16 Cong S. Regulation of crystal growth process and the K+ adsorption capacity of analcime. Master’s Thesis, Northeast Petroleum University, China, 2018 (in Chinese).
丛书丽. 方沸石生长调控及钾离子吸附性能研究. 硕士学位论文, 东北石油大学, 2018.
[1] 陈轶思, 张宏图, 王彬彬, 李瑶. ZIF-8衍生氮掺杂多孔碳的制备及其对低浓度煤层气中CH4/N2的吸附分离研究[J]. 材料导报, 2024, 38(24): 23090093-8.
[2] 王娅鸽, 王彬彬, 杨德威, 李瑶. 氮掺杂柔性块体多孔碳的制备及对CO2/CH4的吸附分离研究[J]. 材料导报, 2023, 37(22): 22050326-9.
[3] 汤倩茜, 陈栋航, 张春杰, 王钢, 郭利民. 沸石分子筛用于挥发性有机物吸附的研究进展[J]. 材料导报, 2022, 36(Z1): 21050144-9.
[4] 张耀君, 张叶, 韩智超, 贺攀阳, 陈浩. 地质聚合物原位转化沸石分子筛的研究进展[J]. 材料导报, 2020, 34(23): 23033-23041.
[5] 孙增智, 薛程, 宋莉芳, 邱树君, 褚海亮, 夏永鹏, 孙立贤. 金属有机骨架化合物的二氧化碳吸附性能的研究进展[J]. 材料导报, 2019, 33(3): 541-549.
[6] 杨富帮, 邓橙, 邓宇, 马军, 刘圣军, 朱孟府. Li-LSX分子筛的离子改性及氧氩吸附分离性能[J]. 材料导报, 2019, 33(24): 4051-4055.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed