Please wait a minute...
材料导报  2025, Vol. 39 Issue (7): 24010241-8    https://doi.org/10.11896/cldb.24010241
  金属与金属基复合材料 |
Cu-0.9Be-1.5Ni-0.04Y合金的摩擦磨损与电化学腐蚀性能研究
黄晗冰1,2, 王培2,3, 乔石1,2, 马如龙1,2, 郝振华1,2,*, 舒永春1,2, 何季麟1,2
1 郑州大学材料科学与工程学院, 郑州 450001
2 中原关键金属实验室, 郑州 450001
3 河南工业大学材料科学与工程学院, 郑州 450001
Study on Frictional Wear and Electrochemical Corrosion Properties of Cu-0.9Be-1.5Ni-0.04Y Alloys
HUANG Hanbing1,2, WANG Pei2,3, QIAO Shi1,2, MA Rulong1,2, HAO Zhenhua1,2,*, SHU Yongchun1,2, HE Jilin1,2
1 School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
2 Zhongyuan Critical Metals Laboratory, Zhengzhou 450001, China
3 School of Material Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
下载:  全 文 ( PDF ) ( 65349KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铍铜合金具有高强度、高硬度以及优异的耐腐蚀、耐磨损性能,在航空航天、电子通信等领域有着广泛的应用。近年来,研究发现添加稀土元素有助于改善铍铜合金的性能,但稀土元素Y对铍铜合金摩擦磨损以及电化学腐蚀的影响鲜有研究。本工作采用真空熔炼的方法制备了Cu-0.9Be-1.5Ni-0.04Y合金,研究了稀土元素Y的添加对Cu-0.9Be-1.5Ni合金物相组成、显微结构、摩擦磨损和电化学腐蚀的影响。结果表明添加稀土元素Y后,Cu-0.9Be-1.5Ni合金晶粒得到明显细化,耐磨性在不同载荷和频率条件下显著提高。此外,Y的添加使合金在电化学腐蚀过程中形成更加致密的氧化膜,同时降低晶粒和晶界的化学活性,合金的自腐蚀电流从7.26×10-6 A/cm2降为6.35×10-6 A/cm2,电极反应和腐蚀速率降低,耐腐蚀性能提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄晗冰
王培
乔石
马如龙
郝振华
舒永春
何季麟
关键词:  摩擦磨损  电化学腐蚀    铍铜合金    
Abstract: The beryllium-copper alloys, with exceptional strength, hardness, corrosion resistance, and wear properties, are extensively utilized in the aerospace, electronics, and communications industries. The incorporation of rare earth elements has been found to enhance the properties of copper alloys in recent years. However, the effect of rare earth element Y on the friction and wear of beryllium copper alloys as well as electrochemical corrosion has rarely been studied. In this work, Cu-0.9Be-1.5Ni-0.04Y alloys were prepared by vacuum melting, and the effects of the addition of Y on the phase composition, microstructure, frictional wear and electrochemical corrosion of Cu-0.9Be-1.5Ni alloys were investigated. The results show that the addition of rare earth element Y has significantly refined the grain of Cu-0.9Be-1.5Ni alloy, and the wear resistance has been improved under different load and frequency conditions. In addition, the addition of Y makes the alloy form a dense oxide film in the electrochemical corrosion process, at the same time reduces the chemical activity of the grains and grain boundaries. Its self-corrosion current decreases from 7.26×10-6 A/cm2 to 6.35×10-6 A/cm2, the electrode reaction and corrosion rate of the alloy decreases, which indicates that the alloy's corrosion resistance improves.
Key words:  friction and wear    electrochemical corrosion    Y    beryllium copper alloy
出版日期:  2025-04-10      发布日期:  2025-04-10
ZTFLH:  TG146.1  
基金资助: 河南省重大专项(GJJSGFZD202303)
通讯作者:  *郝振华,郑州大学材料科学与工程学院副教授、硕士研究生导师。目前主要从事等离子体球化、3D打印、特种陶瓷等粉末冶金新技术的相关研究。zh_hao@zzu.edu.cn   
作者简介:  黄晗冰,2022年6月于南昌航空大学获得工学学士学位,现为郑州大学硕士研究生。目前主要研究领域为先进铜合金铸造与加工。
引用本文:    
黄晗冰, 王培, 乔石, 马如龙, 郝振华, 舒永春, 何季麟. Cu-0.9Be-1.5Ni-0.04Y合金的摩擦磨损与电化学腐蚀性能研究[J]. 材料导报, 2025, 39(7): 24010241-8.
HUANG Hanbing, WANG Pei, QIAO Shi, MA Rulong, HAO Zhenhua, SHU Yongchun, HE Jilin. Study on Frictional Wear and Electrochemical Corrosion Properties of Cu-0.9Be-1.5Ni-0.04Y Alloys. Materials Reports, 2025, 39(7): 24010241-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010241  或          https://www.mater-rep.com/CN/Y2025/V39/I7/24010241
1 Liu J C. Foundry, 2021, 70(1), 124 (in Chinese).
刘金城. 铸造, 2021, 70(1), 124.
2 Tan Z H, Guo Q, Li X, et al. Advanced Materials Research, 2011, 399-401, 2181.
3 Amano H, Tsubota T, Murakami N, et al. Diamond and Related Materials, 2012, 24, 19.
4 Zheng L F, Wang X G, Yue L N, et al. Chinese Journal of Rare Metals, 2021, 45(4), 475 (in Chinese).
郑莉芳, 王晓刚, 岳丽娜, 等. 稀有金属, 2021, 45(4), 475.
5 Wu X L, Hu Q, Zeng L C, et al. Special Casting & Nonferrous Alloys, 2023, 43(5), 607 (in Chinese).
吴鑫林, 胡强, 曾良才, 等. 特种铸造及有色合金, 2023, 43(5), 607.
6 Wu T, Zhou Z, Xu S, et al. Engineering Failure Analysis, 2019, 98, 83.
7 Don J, Sun T C, Rigney D A. Wear, 1983, 91(2), 191.
8 Garcia J, Ferreira A R, Silva F S, et al. Tribology International, 2019, 140, 105843.
9 Kong D, Dong C, Ni X, et al. Applied Surface Science, 2018, 455, 543.
10 Dong C Q, Wang Z J, Yan Y, et al. Chinese Journal of Rare Metals, 2003(1), 139 (in Chinese).
董超群, 汪治军, 阎永, 等. 稀有金属, 2003(1), 139.
11 Xu G L, Lin M F, Deng J W. Shanghai Nonferrous Metals, 2008(2), 59 (in Chinese).
徐高磊, 林木法, 邓江文. 上海有色金属, 2008(2), 59.
12 Dong C Q, Yi J P. Chinese Journal of Rare Metals, 2005(3), 350 (in Chinese).
董超群, 易均平. 稀有金属, 2005(3), 350.
13 Meng X F, Zhang W Q. Special Casting & Nonferrous Alloys, 2009, 29(3), 286 (in Chinese).
孟祥锋, 张伟强. 特种铸造及有色合金, 2009, 29(3), 286.
14 Li R Q, Tian B H, Zhang Y, et al. Transactions of Materials and Heat Treatment, 2014, 35(4), 51(in Chinese).
李瑞卿, 田保红, 张毅, 等. 材料热处理学报, 2014, 35(4), 51.
15 Zeng T, Jiao L, Zhu D C, et al. Hot Working Technology, 2015, 44(8), 46 (in Chinese).
曾涛, 焦林, 朱达川, 等. 热加工工艺, 2015, 44(8), 46.
16 Monshi A, Foroughi M R, Monshi M R. World Journal of Nano Science and Engineering, 2012, 2(3), 154.
17 Devesa S, Rooney A P, Graça M P, et al. Materials Science and Engineering:B, 2021, 263, 114830.
18 Shitu I G, Katibi K K, Taura L S, et al. Ceramics International, 2023, 49(8), 12309.
19 Tan R S, Sun L C. Journal of the Chinese Society of Rare Earths, 1995(S1), 445 (in Chinese).
谈荣生, 孙连超. 中国稀土学报, 1995(S1), 445.
20 Mao X Y, Fang F, Tan R S, et al. Chinese Rare Earths, 2008(3), 75 (in Chinese).
毛向阳, 方峰, 谈荣生, 等. 稀土, 2008(3), 75.
21 Li Y H, Pan J L, Ren H Q, et al. Nonferrous Metals Processing, 2018, 47(6), 22 (in Chinese).
李永华, 潘建立, 任海强, 等. 有色金属加工, 2018, 47(6), 22.
22 Jia B. Effects of Ce and cold rolling technology on microstructure and properties of high-strength and high-conductivity Cu alloys. Master's Thesis, Shandong University, China, 2016 (in Chinese).
贾彬. 稀土铈和冷轧工艺对高强高导电铜合金组织与性能的影响. 硕士学位论文, 山东大学, 2016.
23 Liang S. Microstructure evolution and plastic failure behavior in sliding friction-induced deformation layer of 40Cr/GCr15 tribopairs. Master's Thesis, Shanghai University, China, 2020 (in Chinese).
梁爽. 40Cr/GCr15钢滑动摩擦诱发的变形层组织结构演化及塑性衰竭行为研究. 硕士学位论文, 上海大学, 2020.
24 Dang L, Zhang J S, Tong M, et al. Special Casting & Nonferrous Alloys, 2023, 43(11), 1523 (in Chinese).
党乐, 张俊双, 佟敏, 等. 特种铸造及有色合金, 2023, 43(11), 1523.
[1] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[2] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[3] 叶登建, 代波. 放电等离子烧结Bi、Ce掺杂钇铁石榴石陶瓷的微观结构与磁性能[J]. 材料导报, 2024, 38(4): 22070054-5.
[4] 陈若瑜, 张秋哲, 赵峰, 宋滨娜. 7075 Al/10%SiC复合泡沫材料的制备和摩擦磨损行为研究[J]. 材料导报, 2024, 38(20): 23080149-6.
[5] 张志强, 杨倩, 于子鸣, 张天刚, 路学成, 王浩. 激光功率对Ti6Al4V/NiCr-Cr3C2熔覆层宏微观组织及性能的影响[J]. 材料导报, 2024, 38(2): 22100243-7.
[6] 徐泽, 徐振, 吕哲, 宋华, 陈庆强. Y对6082铝合金铸轧板微观结构及性能的影响[J]. 材料导报, 2024, 38(15): 23080147-6.
[7] 肖华强, 尹星贵, 冯进宇, 肖易, 龚玉婷. TC4钛合金表面激光熔覆Ti-Mo-Al-B复合涂层的组织及摩擦磨损性能[J]. 材料导报, 2024, 38(12): 22080075-6.
[8] 史雪飞, 杨正海, 张永振. 系统弹性对载流摩擦副无电条件下摩擦磨损性能的影响[J]. 材料导报, 2023, 37(5): 21080045-5.
[9] 张弛, 党乾, 刘国怀, 王昭东. 稀土钇的开发及应用[J]. 材料导报, 2023, 37(3): 22120049-8.
[10] 肖金坤, 李天天, 陈娟, 张超. 高速列车铜基摩擦材料的成分设计研究进展[J]. 材料导报, 2023, 37(23): 22030270-11.
[11] 畅庚榕, 刘明霞, 孟瑜, 郭岩, 马大衍, 李世亮, 徐可为. H13钢表面同质激光熔覆中WC微合金化行为及摩擦学性能研究[J]. 材料导报, 2023, 37(22): 22030041-6.
[12] 赵燕春, 张林浩, 师自强, 李文生, 张东, 寇生中. 304不锈钢表面激光熔覆铁基中熵合金涂层组织性能研究[J]. 材料导报, 2023, 37(19): 22050201-7.
[13] 孟帅, 李坤, 秦振兴, 张宇飞, 马柯榕, 宫长伟, 杨雯. 铝酸钇晶体光学性质和热力学性质的第一性原理研究[J]. 材料导报, 2023, 37(10): 22060251-5.
[14] 熊光耀, 李圣鑫, 李波, 沈明学. 面向低温环境的聚合物摩擦学性能及其改性研究进展[J]. 材料导报, 2022, 36(3): 20070001-6.
[15] 洪亢, 朱凯, 刘声楚, 李赏, 潘牧. 电化学腐蚀对气体扩散层氧传质的影响[J]. 材料导报, 2022, 36(20): 21030161-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed