Please wait a minute...
材料导报  2025, Vol. 39 Issue (7): 24010240-10    https://doi.org/10.11896/cldb.24010240
  无机非金属及其复合材料 |
钛铁矿提取TiO2及制备钛白粉研究进展
杨双宇, 廖亚龙*, 贾小宝, 武敏
昆明理工大学冶金与能源工程学院, 昆明 650093
Research Progress on TiO2 Extraction and Preparation of Titanium Dioxide from Ilmenite
YANG Shuangyu, LIAO Yalong*, JIA Xiaobao, WU Min
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
下载:  全 文 ( PDF ) ( 3360KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 我国的钛矿资源约占全球钛资源储量的1/3,但主要以钛、铁共生的原生钛(磁)铁矿形态存在,高效利用的工艺复杂,难度大。本文综述了钛铁矿提取TiO2并制备钛白粉的工艺现状,分析了各种方法的特征及优缺点。分析表明,制备方法主要有硫酸法、盐酸法、氟化法、亚熔盐法及碱性焙烧法。硫酸法对原料的要求较低,是我国生产钛白粉的主流工艺,但存在生产流程长、产品质量偏低、副产物难处理以及三废排放等问题。盐酸法采用萃取工艺分离铁,存在钛铁共萃以及盐酸易挥发导致设备腐蚀的问题,还存在萃取剂的价格高和回收利用难等缺陷。氟化法采用NH4F或 NH4HF2为浸出剂,具有反应条件温和的优点,但存在设备腐蚀问题。亚熔盐法采用高浓度的KOH液相介质分解钛铁矿,虽然反应条件较为温和,三废排放也较少,但存在亚熔盐消耗量大、碱液循环利用难度大的缺陷。碱性焙烧法采用弱酸分解焙烧后的钛铁矿,工艺上具有优越性,但存在碱性物质消耗大、成本高的问题,仍处于研究阶段。以钛铁矿为原料制备钛白粉,仍需要优化和完善传统工艺,并加大新工艺研发投入,以消除现有制备方案的缺点,促进钛白粉行业的健康发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨双宇
廖亚龙
贾小宝
武敏
关键词:  钛铁矿  钛白粉  硫酸法  盐酸法    
Abstract: Titanium resources in China account for about one-third of the global titanium resources reserves, but they exist mainly in the form of primary titanium (magnetic) iron ore where titanium and iron are symbiosed, and it is complicated and difficult to efficiently utilize this kind of resources. The technological status of TiO2 extraction from ilmenite and production of titanium dioxide is reviewed in the summary. The characteristics, advantages and disadvantages of various methods are analyzed. The analysis shows that the main preparation methods are sulfuric acid method, hydrochloric acid method, fluorination method, molten salt method and alkaline roasting method. Sulfuric acid method, the main stream process for the production of titanium dioxide in China, has low requirements on raw materials, but there are several problems such as long production process, low product quality, difficult treatment of by-products and “three wastes” discharge. Hydrochloric acid method, using extraction process to separate iron, has some problems such as co-extraction of ferrotitanium and equipment corrosion caused by volatile hydrochloric acid, and some defects such as high price of extractant and difficult recycling. The fluorination method, using NH4F or NH4HF2 as the leaching agent, has the advantages of mild reaction conditions, but has the problem of equipment corrosion. The submolten salt process, using a high concentration of KOH liquid phase medium to decompose ilmenite, has advantages of mild reaction conditions and low “three wastes” discharge, but has the defects of large consumption of submolten salt and difficult recycling of lye. Alkaline roasting method, using weak acid to decompose ilmenite after roasting, is superior in technology, but has problems of large consumption of alkaline substances and high cost. It is still in the research stage. To prepare titanium dioxide with ilmenite as raw materials, it is still necessary to optimize and improve the traditional process, and increase the investment in research and development of new processes, in order to eliminate the shortcomings of the existing preparation scheme and promote the healthy development of the titanium dioxide industry.
Key words:  ilmenite    titanium dioxide    sulfuric acid process    hydrochloric acid process
出版日期:  2025-04-10      发布日期:  2025-04-10
ZTFLH:  TQ624  
基金资助: 国家自然科学基金(21978122)
通讯作者:  *廖亚龙,昆明理工大学冶金与能源工程学院教授、博士研究生导师。目前主要从事冶金物理化学、无机材料制备等方面的研究工作。liaoylsy@163.com   
作者简介:  杨双宇,昆明理工大学冶金与能源工程学院硕士研究生,在廖亚龙教授的指导下进行研究。目前主要研究领域为资源综合利用。
引用本文:    
杨双宇, 廖亚龙, 贾小宝, 武敏. 钛铁矿提取TiO2及制备钛白粉研究进展[J]. 材料导报, 2025, 39(7): 24010240-10.
YANG Shuangyu, LIAO Yalong, JIA Xiaobao, WU Min. Research Progress on TiO2 Extraction and Preparation of Titanium Dioxide from Ilmenite. Materials Reports, 2025, 39(7): 24010240-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010240  或          https://www.mater-rep.com/CN/Y2025/V39/I7/24010240
1 An Z S, Chen Y, Zhao W. Titanium Industry Progress, 2023, 40(2), 40 (in Chinese).
安仲生, 陈岩, 赵巍. 钛工业进展, 2023, 40(2), 40.
2 Che D, Zhang Z Z, Pan Z S. Geology in China, 2023, 50 (4), 1058(in Chinese).
车东, 张照志, 潘昭帅, 等. 中国地质, 2023, 50 (4), 1058.
3 Yu H D, Wang L N, Qu J K, et al. Journal of Northeastern University (Natural Science), 2020, 41 (2), 275(in Chinese).
于宏东, 王丽娜, 曲景奎, 等. 东北大学学报(自然科学版), 2020, 41(2), 275.
4 Perks C, Mudd G. Ore Geology Reviews, 2019, 107, 629.
5 Gazquez M J, Bolivar J P, Garcia-Tenorio R, et al. Journal of Hazardous Materials, 2009, 166 (2/3), 1429.
6 Li L, Luo J L. Metal Mine, 2010(4), 89(in Chinese).
李亮, 罗建林. 金属矿山, 2010(4), 89.
7 Racovita A D. International Journal of Environmental Research and Public Health, 2022, 19(9), 5681.
8 Khitab A, Ahmad S, Munir M J, et al. Reviews on Advanced Materials Science, 2018, 53 (1), 90.
9 Chueangchayaphan W, Luangchuang P, Chueangchayaphan N. Polymers, 2022, 14 (23), 5267.
10 Lu P J, Huang S C, Chen Y P, et al. Journal of Food and Drug Analysis, 2015, 23 (3), 587.
11 Huang J S, Yu J, Kim H M, et al. Nanomaterials, 2019, 9 (8), 1175.
12 Allahverdiyev A M, Abamor E S, Bagirova M, et al. Future Microbiol, 2011, 6, 933.
13 Zhang Y, Fan W, Du H Q, et al. Surface Engineering, 2017, 33(11), 849.
14 Ismael M. Solar Energy, 2020, 211, 522.
15 Li J Z, Li X M, Wang Y. Dyestuffs and Coloration, 2022, 59 (5), 12(in Chinese).
李金泽, 李学敏, 王瑛. 染料与染色, 2022, 59 (5), 12.
16 Zhu X, Zheng S, Zhang Y, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(5), 4821.
17 Zeng W, Ma L, Li H Y, et al. Guangzhou Chemical Industry, 2022, 50(15), 100(in Chinese).
曾伟, 马磊, 李海艳, 等. 广州化工, 2022, 50(15), 100.
18 Sun Q S. Coating and Protection, 2021, 42 (11), 48(in Chinese).
孙群山. 涂层与防护, 2021, 42 (11), 48.
19 Qu Y C, Zhang Y Y. Chemical Engineering Design Communications, 2019, 45 (7), 153(in Chinese).
曲以臣, 张盈盈. 化工设计通讯, 2019, 45 (7), 153.
20 Gao J. Metallurgical Analysis, 2019, 39 (12), 8(in Chinese).
高健. 冶金分析, 2019, 39 (12), 8.
21 Cao P. Inorganic Chemicals Industry, 2019, 51 (9), 54(in Chinese).
曹鹏. 无机盐工业, 2019, 51 (9), 54.
22 Wang H B, Wu X P, Ma X, et al. The Chinese Journal of Nonferrous Metals, 2021, 31(12), 3655(in Chinese).
王海波, 吴小平, 马鑫, 等. 中国有色金属学报, 2021, 31 (12), 3655.
23 Wang W, Liu Y, Xue T, et al. Chemical Engineering Science, 2015, 134, 196.
24 Wu X, Liu Y. High Temperature Materials and Processes, 2020, 39(1), 627.
25 Liao X F, Chen G, Liu Q Q, et al. Inorganic Chemicals Industry, 2016, 48 (8), 6(in Chinese).
廖雪峰, 陈菓, 刘钱钱, 等. 无机盐工业, 2016, 48 (8), 6.
26 Wang Z, Chen K, Zhu J, et al. IOP Conference Series:Materials Science and Engineering, 2019, 562(1), 012002.
27 Tian C. Dyes and Pigments, 2016, 133, 60.
28 Wang Z N, Chen K, Zhu J W, et al. Inorganic Chemicals Industry, 2020, 52 (3), 45(in Chinese).
王子楠, 陈葵, 朱家文, 等. 无机盐工业, 2020, 52 (3), 45.
29 Wu J C, Lu R F, Sun Q, et al. Iron Steel Vanadium Titanium, 2022, 43 (5), 35(in Chinese).
吴健春, 路瑞芳, 孙蔷, 等. 钢铁钒钛, 2022, 43 (5), 35.
30 Berkovich S A. US patent, US 3903239, 1975.
31 Deng K. Chlor-Alkali Industry, 2013, 49(7), 23(in Chinese).
邓科. 氯碱工业, 2013, 49(7), 23.
32 Duyvesteyn W P C, Spitler T M, Sabacky B J, et al. US patent, US 6548039, 2003.
33 Tang Y, Deng K, Zhang D M. Chlor-Alkali Industry, 2014, 50(4), 36(in Chinese).
唐勇, 邓科, 张定明. 氯碱工业, 2014, 50(4), 36.
34 ProcessResearch Ortech Inc.US patent, US7803336, 2010.
35 Wu Y, Lan G M. Titanium Industry Progress, 2021, 38(1), 37(in Chinese).
吴优, 兰光铭. 钛工业进展, 2021, 38(1), 37.
36 Shen X X. Engineering and Technological Research, 2013(6), 47(in Chinese).
沈小小. 冶金丛刊, 2013(6), 47.
37 Haverkamp R G, Kruger D, Rajashekar R. Hydrometallurgy, 2016, 163, 198.
38 Jabit N A, Senanayake G. Journal of Physics:Conference Series, 2018, 1082, 012089.
39 Lavasani S H, Azimi E, Sarvi M N. Metallurgical and Materials Transactions B, 2019, 50(6), 2586.
40 Anggraeni V M P, Supriyatna Y I, Astuti W, et al. Journal of Sustai-nable Metallurgy, 2023, 9(4), 1578.
41 Yu Y J, Song Y, Dong S S, et al. Iron Steel Vanadium Titanium, 2022, 43(4), 28(in Chinese).
于耀杰, 宋悦, 董仕顺, 等. 钢铁钒钛, 2022, 43(4), 28.
42 Hosseini E, Rashchi F, Ataie A. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(11), 1263.
43 Wang X, Liu W, Liang B, et al. Separation and Purification Technology, 2016, 158, 96.
44 Zhu K, Wei Q, Li H, et al. Minerals Engineering, 2022, 186, 107744.
45 Haverkamp R G, Wallwork K S, Waterland M R, et al. Industrial & Engineering Chemistry Research, 2022, 61(19), 6333.
46 Pu Z H. China Coatings, 2023, 38 (7), 57(in Chinese).
蒲中华. 中国涂料, 2023, 38 (7), 57.
47 Gordienko P S. EP patent, EP1683762, 2006.
48 Bakeeva N G, Gordienko P S, Pashnina E V. Russian Journal of General Chemistry, 2008, 78 (4), 527.
49 Bakeeva N G, Gordienko P S, Pashnina E V. Russian Journal of General Chemistry, 2009, 79 (1), 1.
50 Tong Q J. Study on preparation of titanate from titaniferous slag using sub-molten salt method. Master's Thesis, Institute of Process Engineering of Chinese Academy of Sciences, China, 2006(in Chinese).
仝启杰. 高钛渣亚熔盐法制备钛酸盐的研究. 硕士学位论文, 中国科学院过程工程研究所, 2006.
51 Tong Q J, Qi T, Liu Y M, et al. The Chinese Journal of Process Engineering, 2007, 7(1), 85(in Chinese).
仝启杰, 齐涛, 刘玉民, 等. 过程工程学报, 2007, 7(1), 85.
52 Liu Y M, Qi T, Wang L N, et al. The Chinese Journal of Process Engineering, 2009, 9(2), 319(in Chinese).
刘玉民, 齐涛, 王丽娜, 等. 过程工程学报, 2009, 9(2), 319.
53 Liu Y M, Qi T, Zhang Y. The Chinese Journal of Nonferrous Metals, 2009, 19(6), 1142(in Chinese).
刘玉民, 齐涛, 张懿. 中国有色金属学报, 2009, 19(6), 1142.
54 Xue T Y, Wang L N, Qi T, et al. Hydrometallurgy, 2009, 95 (1/2), 22.
55 Feng Y, Wang J G, Wang L N, et al. Rare Metals, 2009, 28 (6), 564.
56 Han Y F, Sun T C, Li J, et al. International Journal of Minerals, Metallurgy and Materials, 2012, 19 (3), 205.
57 Wang D, Chu J L, Li J, et al. Powder Technology, 2012, 232, 99.
58 Wang S Y, Jin Y J, Chu J L, et al. Iron Steel Vanadium Titanium, 2013, 34(3), 19(in Chinese).
王淑奕, 金英杰, 初景龙, 等. 钢铁钒钛, 2013, 34(3), 19.
59 Wang D, Chu J L, Liu Y H, et al. Industrial & Engineering Chemistry Research, 2013, 52 (45), 15756.
60 Chen J, Guo S H, Omran M, et al. Advanced Powder Technology, 2022, 33 (5), 103549.
61 Sampath A H J, Wickramasinghe N D, de Silva K M N, et al. Minerals, 2023, 13 (5), 662.
62 Sanchez-Segado S, Lahiri A, Jha A. Open Chemistry, 2014, 13(1), 270.
63 Parirenyatwa S, Escudero-Castejon L, Sanchez-Segado S, et al. Hydrometallurgy, 2016, 165, 213.
64 Ginting L I B, Manaf A, Astuti W, et al. IOP Conference Series:Earth and Environmental Science, 2023, 1201, 012092.
65 Tian C. Materials Research Bulletin, 2018, 103, 83.
66 Tian C. Scientific Reports, 2020, 10(1), 7999.
67 Tian C, Ma G, Ge H. Scientific Reports, 2023, 13(1), 8509.
68 Zeng F, Luo D, Zhang Z, et al. Journal of Alloys and Compounds, 2016, 670, 249.
69 Wu J C, Lu R F, Sun Q, et al. Iron Steel Vanadium Titanium, 2023, 44 (1), 10(in Chinese).
吴健春, 路瑞芳, 孙蔷, 等. 钢铁钒钛, 2023, 44 (1), 10.
70 Tian C. Materials Chemistry and Physics, 2020, 249, 123125.
71 Chen K, Yan X H, Wu P S, et al. Phase Transitions, 2021, 94(5), 353.
72 Zhang C, zhou C Y, He J, et al. Surface Technology, https://link.cnki.net/urlid/50.1083.TG.20230927.1647.006(in Chinese).
张成, 周春勇, 何俊, 等. 表面技术, https://link.cnki.net/urlid/50.1083.TG.20230927.1647.006.
73 Zhou H, Sun S, Ding H. Advances in Materials Science and Engineering, 2017, 2017, 1.
74 Xiao H, Wang J Y, Li W H, et al. Chinese Journal of Rare Metals, 2022, 46 (4), 523(in Chinese).
肖晖, 王经逸, 李文海, 等. 稀有金属, 2022, 46 (4), 523.
75 Tang S Y, Guo Y F, Zheng F Q, et al. Inorganic Chemicals Industry, 2022, 54 (7), 27(in Chinese).
唐舒扬, 郭宇峰, 郑富强, 等. 无机盐工业, 2022, 54 (7), 27.
76 Bi S. Iron Steel Vanadium Titanium, 2023, 44(1), 1(in Chinese).
毕胜. 钢铁钒钛, 2023, 44(1), 1.
77 Yuan W L, Wang B X, Zhao Y, et al. Nonferrous Metals Engineering, 2023, 13 (7), 61(in Chinese).
袁文龙, 王碧侠, 赵瑛, 等. 有色金属工程, 2023, 13 (7), 61.
78 Jiang Y, Peng C, Zhou K, et al. Journal of Cleaner Production, 2023, 415, 137817.
79 Gong J Z. Sulphuric Acid Industry, 2016(1), 67(in Chinese).
龚家竹. 硫酸工业, 2016(1), 67.
80 Ma G Q, Cheng M. Ferroelectrics, 2021, 581 (1), 281.
81 Cao X, Chen Y, Liang X, et al. Separations, 2023, 10(7), 400.
82 Jiang S P, Gan S P, Yang S M, et al. Journal of Salt Science and Chemical Industry, 2022, 51(7), 6(in Chinese).
蒋世鹏, 甘顺鹏, 杨三妹, 等. 盐科学与化工, 2022, 51(7), 6.
83 Xiong X H, Wang Z X, Wu, F X, et al. Advanced Powder Technology, 2013, 24 (1), 60.
84 Saida S, Kumar B, Roy G G, et al. Mining, Metallurgy & Exploration, 2023, 40(4), 1345.
85 Zhang Y W, Tang S Y, Yuan S J, et al. Iron Steel Vanadium Titanium, 2016, 37 (4), 29(in Chinese).
张耀文, 唐思扬, 袁绍军, 等. 钢铁钒钛, 2016, 37 (4), 29.
86 Tang S, Zhang Y, Yuan S, et al. RSC Advance, 2017, 7(72), 45607.
87 Li S Z, Ma K, Tang S Y, et al. Applied Chemical Industry, 2019, 48 (10), 2276 (in Chinese).
李淑贞, 马奎, 唐思扬, 等. 应用化工, 2019, 48 (10), 2276.
88 Ma K, Li S, Liao L, et al. ACS Sustainable Chemistry & Engineering, 2021, 9(27), 9106.
89 Lu R, Li F, Li X, et al. Crystals, 2023, 13(11), 1553.
90 Sadeghi M H, Nasr Esfahany M. Industrial & Engineering Chemistry Research, 2022, 61 (4), 1786.
91 Chang W B, Chen J L, Dou J, et al. ACS Omega, 2022, 7 (26), 22447.
92 Hao Xiaohua, Xu Shuying, Zhang Yucang, et al. Nonferrous Metals (Extractive Metallurgy), 2016(10), 20(in Chinese).
郝小华, 徐树英, 张玉苍, 等. 有色金属(冶炼部分), 2016(10), 20.
93 Zhao G, Liu W, Yang S, et al. Chemical Engineering Communications, 2016, 203(9), 1207.
94 Huang W, Zhang Y, Lu J, et al. Ceramics International, 2023, 49(10), 15618.
95 Gong J Z. Inorganic Chemicals Industry, 2020, 52(10), 55(in Chinese).
龚家竹. 无机盐工业, 2020, 52(10), 55.
96 Krysenko G F, Epov D G, Medkov M A, et al. Theoretical Foundations of Chemical Engineering, 2016, 50 (4), 588.
97 Karelin V A, Strashko A N, Dubrovin A V, et al. Procedia Chemistry, 2014, 11, 56.
98 Zheng F Q, Guo Y F, Qiu G Z, et al. Journal of Hazardous Materials, 2018, 344, 490.
99 Zheng F Q, Guo Y F, Cheng F, et al. Metals, 2021, 11 (8), 1176 .
No related articles found!
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed