Please wait a minute...
材料导报  2025, Vol. 39 Issue (6): 24010227-11    https://doi.org/10.11896/cldb.24010227
  金属与金属基复合材料 |
载荷和电位对Ti-6Al-3Nb-2Zr-1Mo合金在海水中腐蚀磨损行为的影响
谢浩民1,2, 李光明3, 胡凌越3, 毛飞雄2,*, 宫克2,*
1 宁波大学材料科学与化学工程学院,浙江 宁波 315211
2 中国科学院宁波材料技术与工程研究所,浙江 宁波 315201
3 武汉第二船舶设计研究所,武汉 430064
Influence of Load and Electrode Potential on the Tribocorrosion Behavior of Ti-6Al-3Nb-2Zr-1Mo Alloy in Seawater
XIE Haomin1,2, LI Guangming3, HU Lingyue3, MAO Feixiong2,*, GONG Ke2,*
1 School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
2 Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
3 Wuhan Second Ship Design and Research Institute, Wuhan 430064, China
下载:  全 文 ( PDF ) ( 42155KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Ti-6Al-3Nb-2Zr-1Mo(Ti80)合金是一种专为海洋工程应用而设计的近α钛合金,广泛用于各类海工装备的受力构件、螺栓、轴及耐压耐蚀壳体。在海洋环境下作为运动部件时,Ti80不可避免地会发生腐蚀磨损,但目前鲜有对其腐蚀磨损性能及腐蚀磨损交互作用的研究报道。本工作通过力学-电化学结合的方法研究了载荷和电极电位对Ti80合金在人造海水中腐蚀磨损行为的影响,采用金相显微镜、3D光学轮廓仪、SEM、XRD、XPS、维氏硬度计等测试手段对材料磨损区域进行微观形貌表征、表面成分鉴定和硬度变化等测试。在人工海水中,Ti80的腐蚀电位由静态的-276 mV下降至摩擦条件(15 N)下的-551 mV,腐蚀电流密度由静态下的0.363 0 μA/cm2增大到摩擦条件(15 N)下的12.554 5 μA/cm2,摩擦磨损不仅改变了Ti80的腐蚀倾向并显著加速了材料腐蚀。交互作用分析表明,协同作用中腐蚀加速磨损量占比可达到60.38%,证明腐蚀对磨损的促进作用更加明显,但纯机械磨损损失始终主导总材料损失(>70%)。本工作可为预测Ti80合金部件安全服役寿命提供理论与数据支持。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢浩民
李光明
胡凌越
毛飞雄
宫克
关键词:  Ti80合金  腐蚀磨损  电化学  交互作用    
Abstract: Ti-6Al-3Nb-2Zr-1Mo (abbreviated as Ti80) alloy is a type of near-α Ti alloy specially designed for marine applications and is widely used in stress members, bolts, shafts and pressure and corrosion resistant housings for all types of offshore equipment. When used as a moving part in the marine environment, Ti80 inevitably undergoes tribocorrosion, but few studies have been reported on its tribocorrosion properties and the synergism between corrosion and wear. In this work, a method combining mechanics and electrochemistry was used to study the effects of load and electrode potential on the tribocorrosion properties of Ti80 alloy in artificial seawater. Metallographic microscopy, 3D optical profilometer, SEM, XRD, XPS, and Vickers hardness tester were used to characterize the microstructure, identify the surface composition, and determine the hardness changes of the worn area. In artificial seawater, the corrosion potential of Ti80 decreased from -276 mV under static condition to -551 mV under frictional condition (15 N), and the corrosion current density increased from 0.363 0 μA/cm2 under static condition to 12.554 5 μA/cm2 under friction condition (15 N). Friction and wear not only altered the corrosion tendency of Ti80 but also significantly accelerated the corrosion rate. Synergism analysis showed that the proportion of corrosion-accelerated wear component in the synergistic effect can reach 60.38%, indicating that corrosion has a more significant promoting effect on wear. However, the pure mechanical wear loss always dominated the total material loss (>70%). This work can provide theoretical and data support for predicting the safe service life of Ti80 alloy components.
Key words:  Ti80 alloy    tribocorrosion    electrochemical    synergistic effect
出版日期:  2025-03-25      发布日期:  2025-03-24
ZTFLH:  TG172  
  TG117  
基金资助: 国家重点研发计划(2022YFC3103803);中国科学院国际合作项目(174433KYSB2020006);宁波市重点科技项目(2021Z079)
通讯作者:  *毛飞雄,中国科学院宁波材料技术与工程研究所研究员、博士研究生导师。主要从事海洋腐蚀与防护方面的研究。
宫克,博士,中国科学院宁波材料技术与工程研究所助理研究员。主要研究方向为海洋材料的腐蚀与防护。maofeixiong@nimte.ac.cn;gognke@nimte.ac.cn   
作者简介:  谢浩民,宁波大学材料科学与化学工程学院硕士研究生,在中国科学院宁波材料技术与工程研究所联合培养,目前主要研究领域为金属腐蚀磨损。
引用本文:    
谢浩民, 李光明, 胡凌越, 毛飞雄, 宫克. 载荷和电位对Ti-6Al-3Nb-2Zr-1Mo合金在海水中腐蚀磨损行为的影响[J]. 材料导报, 2025, 39(6): 24010227-11.
XIE Haomin, LI Guangming, HU Lingyue, MAO Feixiong, GONG Ke. Influence of Load and Electrode Potential on the Tribocorrosion Behavior of Ti-6Al-3Nb-2Zr-1Mo Alloy in Seawater. Materials Reports, 2025, 39(6): 24010227-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010227  或          https://www.mater-rep.com/CN/Y2025/V39/I6/24010227
1 Danovaro R, Corinaldesi C, Dell'Anno A, et al. FEMS Microbiology Letters, 2017, 364(23), fnx214.
2 Chen J, Zhao W. Chemical Engineering Journal, 2021, 423, 130195.
3 Liu Y, Du H, Zuo X, et al. Corrosion Science, 2021, 188, 109528.
4 Landolt D, Mischler S, Stemp M. Electrochimica Acta, 2001, 46(24-25), 3913.
5 Papageorgiou N, Mischler S. Tribology Letters, 2012, 48(3), 271.
6 Sun Y, Rana V. Materials Chemistry and Physics, 2011, 129(1-2), 138.
7 Allen C, Ball A. Tribology International, 1996, 29(2), 105.
8 Qiao Y, Xu D, Wang S, et al. Journal of Materials Science & Technology, 2021, 60, 168.
9 Qin T, Lin X, Yu J, et al. Corrosion Science, 2021, 185, 109392.
10 Li X, Wang L, Fan L, et al. Corrosion Science, 2021, 192, 109812.
11 Xiong J, Li S, Gao F, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2015, 640, 419.
12 Su B, Wang B, Luo L, et al. Journal of Materials Science & Technology, 2021, 74, 143.
13 Yu S Y, Brodrick C W, Ryan M P, et al. Journal of the Electrochemical Society, 1999, 146(12), 4429.
14 Yu S Y, Scully J R, Vitus C M. Journal of the Electrochemical Society, 2001, 148(2), B68.
15 Guo W Y, Sun J, Wu J S. Materials Chemistry and Physics, 2009, 113(2-3), 816.
16 Metikos-Hukovic M, Kwokal A, Piljac J. Biomaterials, 2003, 24(21), 3765.
17 Xu W, Chen M, Lu X, et al. Corrosion Science, 2020, 168, 108557.
18 Salas L, Chavez J, Jimenez O, et al. Materials Letters, 2021, 283, 128903.
19 Li X, Wang L, Fan L, et al. Journal of Materials Research and Technology-Jmr&T, 2022, 17, 374.
20 Su B, Wang B, Luo L, et al. Materials & Design, 2022, 214, 110416.
21 Huang F, Qin Y, Zhang H, et al. Corrosion Science, 2023, 213, 110978.
22 Luo G, Zhang L, Xiong Y, et al. Surface & Coatings Technology, 2022, 440, 128425.
23 Chen X, Zhang L, Xiong Y, et al. Surface & Coatings Technology, 2023, 459, 129383.
24 Buciumeanu M, Bagheri A, Shamsaei N, et al. Tribology International, 2018, 119, 381.
25 Ren P, Meng H, Xia Q, et al. Corrosion Science, 2021, 180, 109185.
26 Lu X, Zhang D, Xu W, et al. Corrosion Science, 2020, 177, 109007.
27 Sousa L, Antunes R D M, Fernandes J C S, et al. Surface & Coatings Technology, 2023, 470, 129835.
28 Caha I, Alves A C, Chirico C, et al. Corrosion Science, 2020, 176, 108925.
29 Wu Y, Wang Z, Chen J, et al. Tribology International, 2023, 178, 108026.
30 Zhang B, Wang J, Yan F. Corrosion Science, 2018, 131, 252.
31 Barril S, Mischler S, Landolt D. Wear, 2005, 259(1-6), 282.
32 Vieira A C, Rocha L A, Papageorgiou N, et al. Corrosion Science, 2012, 54, 26.
33 Neville A, McDougall B A B. Wear, 2001, 250, 726.
34 Yan C, Zeng Q, Xu Y, et al. Applied Surface Science, 2019, 498, 143838.
35 Shan L, Wang Y, Zhang Y, et al. Wear, 2016, 362, 97.
36 Ma J, Wen J, Gao J, et al. Electrochimica Acta, 2014, 129, 69.
37 Wang Z, Feng Z, Zhang L. Corrosion Science, 2020, 174, 108844.
38 Cui Z, Chen S, Wang L, et al. Journal of the Electrochemical Society, 2017, 164(13), C856.
39 Gao R, Liu E, Zhang Y, et al. Journal of Materials Engineering and Performance, 2019, 28(1), 414.
40 Uhlig H H. Journal of Applied Mechanics-Transactions of the Asme, 1954, 21(4), 401.
41 Watson S W, Friedersdorf F J, Madsen B W, et al. Wear, 1995, 181, 476.
42 Huttunen-Saarivirta E, Kilpi L, Hakala T J, et al. Tribology International, 2016, 95, 358.
43 Kim T, Lim J W. Applied Surface Science, 2022, 590, 153098.
44 Ma F, Li J, Zeng Z, et al. Lubrication Science, 2018, 30(7), 365.
45 Li Z, Yu H, Sun D. Corrosion Science, 2021, 183, 109306.
[1] 徐海黎, 杨雅雯, 邢强, 陈妍, 廖晓波, 张小萍, 庄健. 玻璃微探针电沉积的微结构制造路径规划[J]. 材料导报, 2025, 39(5): 23100020-7.
[2] 孙丽丽, 关宁, 王勇, 李永存. TiFe基储氢合金活化及电化学性能研究进展[J]. 材料导报, 2025, 39(4): 24010105-9.
[3] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[4] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[5] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[6] 李朋娟, 邹振羽, 黄鹏飞, 金鑫, 吴晓雨, 李晓丽. N/O/P共掺杂三聚氰胺基多孔碳材料的制备及储锌性能研究[J]. 材料导报, 2025, 39(2): 23100113-7.
[7] 王丕, 宋琛, 董东东, 曾德长, 刘太楷, 文魁, 毛杰, 刘敏. 多孔Fe24Cr金属支撑体厚度对SOFC性能的影响[J]. 材料导报, 2025, 39(1): 23110193-7.
[8] 井文昌, 张志鸿, 刘香琛, 吴云翼, 李宝让. 新型液态金属电池材料体系及其相关技术的研究与进展[J]. 材料导报, 2025, 39(1): 23090098-17.
[9] 苏咸凯, 解志鹏, 张达, 侯圣平, 杨斌, 梁风. 单壁碳纳米角的制备及电化学应用进展[J]. 材料导报, 2024, 38(6): 22100192-13.
[10] 李兰心, 潘牧, 郭伟. 质子交换膜燃料电池在线监测方法研究进展[J]. 材料导报, 2024, 38(6): 22070018-14.
[11] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[12] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[13] 高娜, 庞佩琦, 李智, 牟国栋, 崔天成, 杜贤龙, 李涛, 肖国萍. 电解工艺条件对Cu基催化剂电化学还原CO2的产物分布影响[J]. 材料导报, 2024, 38(24): 23100052-5.
[14] 杨文秀, 王冰冰, 俞小花, 田林, 谢刚. 热分解温度对IrO2-RuO2-SnO2/Ti阳极微观形貌及性能的影响[J]. 材料导报, 2024, 38(24): 23080117-5.
[15] 李亚婷, 刘仲明, 陈钰, 郭彦彤, 杨欢, 张海燕. 石墨烯纳米复合材料在电化学核酸传感器中的应用[J]. 材料导报, 2024, 38(24): 23070077-7.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed