Influence of Load and Electrode Potential on the Tribocorrosion Behavior of Ti-6Al-3Nb-2Zr-1Mo Alloy in Seawater
XIE Haomin1,2, LI Guangming3, HU Lingyue3, MAO Feixiong2,*, GONG Ke2,*
1 School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China 2 Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China 3 Wuhan Second Ship Design and Research Institute, Wuhan 430064, China
Abstract: Ti-6Al-3Nb-2Zr-1Mo (abbreviated as Ti80) alloy is a type of near-α Ti alloy specially designed for marine applications and is widely used in stress members, bolts, shafts and pressure and corrosion resistant housings for all types of offshore equipment. When used as a moving part in the marine environment, Ti80 inevitably undergoes tribocorrosion, but few studies have been reported on its tribocorrosion properties and the synergism between corrosion and wear. In this work, a method combining mechanics and electrochemistry was used to study the effects of load and electrode potential on the tribocorrosion properties of Ti80 alloy in artificial seawater. Metallographic microscopy, 3D optical profilometer, SEM, XRD, XPS, and Vickers hardness tester were used to characterize the microstructure, identify the surface composition, and determine the hardness changes of the worn area. In artificial seawater, the corrosion potential of Ti80 decreased from -276 mV under static condition to -551 mV under frictional condition (15 N), and the corrosion current density increased from 0.363 0 μA/cm2 under static condition to 12.554 5 μA/cm2 under friction condition (15 N). Friction and wear not only altered the corrosion tendency of Ti80 but also significantly accelerated the corrosion rate. Synergism analysis showed that the proportion of corrosion-accelerated wear component in the synergistic effect can reach 60.38%, indicating that corrosion has a more significant promoting effect on wear. However, the pure mechanical wear loss always dominated the total material loss (>70%). This work can provide theoretical and data support for predicting the safe service life of Ti80 alloy components.
谢浩民, 李光明, 胡凌越, 毛飞雄, 宫克. 载荷和电位对Ti-6Al-3Nb-2Zr-1Mo合金在海水中腐蚀磨损行为的影响[J]. 材料导报, 2025, 39(6): 24010227-11.
XIE Haomin, LI Guangming, HU Lingyue, MAO Feixiong, GONG Ke. Influence of Load and Electrode Potential on the Tribocorrosion Behavior of Ti-6Al-3Nb-2Zr-1Mo Alloy in Seawater. Materials Reports, 2025, 39(6): 24010227-11.
1 Danovaro R, Corinaldesi C, Dell'Anno A, et al. FEMS Microbiology Letters, 2017, 364(23), fnx214. 2 Chen J, Zhao W. Chemical Engineering Journal, 2021, 423, 130195. 3 Liu Y, Du H, Zuo X, et al. Corrosion Science, 2021, 188, 109528. 4 Landolt D, Mischler S, Stemp M. Electrochimica Acta, 2001, 46(24-25), 3913. 5 Papageorgiou N, Mischler S. Tribology Letters, 2012, 48(3), 271. 6 Sun Y, Rana V. Materials Chemistry and Physics, 2011, 129(1-2), 138. 7 Allen C, Ball A. Tribology International, 1996, 29(2), 105. 8 Qiao Y, Xu D, Wang S, et al. Journal of Materials Science & Technology, 2021, 60, 168. 9 Qin T, Lin X, Yu J, et al. Corrosion Science, 2021, 185, 109392. 10 Li X, Wang L, Fan L, et al. Corrosion Science, 2021, 192, 109812. 11 Xiong J, Li S, Gao F, et al. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2015, 640, 419. 12 Su B, Wang B, Luo L, et al. Journal of Materials Science & Technology, 2021, 74, 143. 13 Yu S Y, Brodrick C W, Ryan M P, et al. Journal of the Electrochemical Society, 1999, 146(12), 4429. 14 Yu S Y, Scully J R, Vitus C M. Journal of the Electrochemical Society, 2001, 148(2), B68. 15 Guo W Y, Sun J, Wu J S. Materials Chemistry and Physics, 2009, 113(2-3), 816. 16 Metikos-Hukovic M, Kwokal A, Piljac J. Biomaterials, 2003, 24(21), 3765. 17 Xu W, Chen M, Lu X, et al. Corrosion Science, 2020, 168, 108557. 18 Salas L, Chavez J, Jimenez O, et al. Materials Letters, 2021, 283, 128903. 19 Li X, Wang L, Fan L, et al. Journal of Materials Research and Technology-Jmr&T, 2022, 17, 374. 20 Su B, Wang B, Luo L, et al. Materials & Design, 2022, 214, 110416. 21 Huang F, Qin Y, Zhang H, et al. Corrosion Science, 2023, 213, 110978. 22 Luo G, Zhang L, Xiong Y, et al. Surface & Coatings Technology, 2022, 440, 128425. 23 Chen X, Zhang L, Xiong Y, et al. Surface & Coatings Technology, 2023, 459, 129383. 24 Buciumeanu M, Bagheri A, Shamsaei N, et al. Tribology International, 2018, 119, 381. 25 Ren P, Meng H, Xia Q, et al. Corrosion Science, 2021, 180, 109185. 26 Lu X, Zhang D, Xu W, et al. Corrosion Science, 2020, 177, 109007. 27 Sousa L, Antunes R D M, Fernandes J C S, et al. Surface & Coatings Technology, 2023, 470, 129835. 28 Caha I, Alves A C, Chirico C, et al. Corrosion Science, 2020, 176, 108925. 29 Wu Y, Wang Z, Chen J, et al. Tribology International, 2023, 178, 108026. 30 Zhang B, Wang J, Yan F. Corrosion Science, 2018, 131, 252. 31 Barril S, Mischler S, Landolt D. Wear, 2005, 259(1-6), 282. 32 Vieira A C, Rocha L A, Papageorgiou N, et al. Corrosion Science, 2012, 54, 26. 33 Neville A, McDougall B A B. Wear, 2001, 250, 726. 34 Yan C, Zeng Q, Xu Y, et al. Applied Surface Science, 2019, 498, 143838. 35 Shan L, Wang Y, Zhang Y, et al. Wear, 2016, 362, 97. 36 Ma J, Wen J, Gao J, et al. Electrochimica Acta, 2014, 129, 69. 37 Wang Z, Feng Z, Zhang L. Corrosion Science, 2020, 174, 108844. 38 Cui Z, Chen S, Wang L, et al. Journal of the Electrochemical Society, 2017, 164(13), C856. 39 Gao R, Liu E, Zhang Y, et al. Journal of Materials Engineering and Performance, 2019, 28(1), 414. 40 Uhlig H H. Journal of Applied Mechanics-Transactions of the Asme, 1954, 21(4), 401. 41 Watson S W, Friedersdorf F J, Madsen B W, et al. Wear, 1995, 181, 476. 42 Huttunen-Saarivirta E, Kilpi L, Hakala T J, et al. Tribology International, 2016, 95, 358. 43 Kim T, Lim J W. Applied Surface Science, 2022, 590, 153098. 44 Ma F, Li J, Zeng Z, et al. Lubrication Science, 2018, 30(7), 365. 45 Li Z, Yu H, Sun D. Corrosion Science, 2021, 183, 109306.