Please wait a minute...
材料导报  2025, Vol. 39 Issue (6): 24020022-12    https://doi.org/10.11896/cldb.24020022
  无机非金属及其复合材料 |
混凝土稳健性评价方法及提升措施研究进展
易忠来1,2,*, 纪文骁1,3, 李化建1,2, 杨志强1,2, 温浩1,2, 王振1,2
1 中国铁道科学研究院集团有限公司铁道建筑研究所,北京 100081
2 中国铁道科学研究院集团有限公司高速铁路轨道系统全国重点实验室,北京 100081
3 中国铁道科学研究院研究生部,北京 100081
Research Progress on Evaluation Methods and Improvement Measures for the Robustness of Concrete
YI Zhonglai1,2,*, JI Wenxiao1,3, LI Huajian1,2, YANG Zhiqiang1,2, WEN Hao1,2, WANG Zhen1,2
1 Railway Engineering Research Institute, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China
2 National Key Laboratory of High Speed Railway Track System, China Academy of Railway Sciences Corporation Limited, Beijing 100081, China
3 Graduate School, China Academy of Railway Sciences, Beijing 100081, China
下载:  全 文 ( PDF ) ( 6038KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 混凝土的稳健性是混凝土在原材料、环境等因素发生波动时能否维持良好新拌性能的评价指标,决定了拌合物的状态和工作性能,同时对混凝土硬化体的性能具有重要影响。本文系统综述了国内外对混凝土稳健性的研究进展,提出了混凝土稳健性的定义,从原材料性能与用量、温度以及搅拌工艺分析了影响稳健性的主要因素,总结了基于工作性能和流变性能测试的稳健性评价方法,并从浆体体积、掺合料以及外加剂三个层面提出了稳健性的提升措施,以期为保障混凝土施工质量提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
易忠来
纪文骁
李化建
杨志强
温浩
王振
关键词:  稳健性  新拌混凝土  流变参数  工作性能  评价方法  提升措施    
Abstract: The robustness of concrete is used for evaluating the sustainability of workability of fresh concrete under the fluctuation of raw materials' quality and environmental factors, which determines the state of the mixture and possess a significant influence on the properties of hardened concrete. In this paper, the research progress on the robustness of concrete is systematically reviewed, and the definition of the robustness of concrete based on the workability and rheological properties of mixture is proposed. The influence of the properties and contents of raw materials, environment temperature and mixing process on fresh properties of concrete are analyzed. The existing robustness evaluating methods based on the workability and rheological test methods are then summarized. The improving method of the robustness of concrete are reviewed from three aspects, such as paste volume, supplementary cementitious materials and admixture, which can provide suggestions and directions for the construction quality of concrete in practical engineering.
Key words:  robustness    fresh concrete    rheological parameters    workability    evaluation method    improvement measures
出版日期:  2025-03-25      发布日期:  2025-03-24
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52178260);铁科院院基金(2023YJ229)
通讯作者:  *易忠来,中国铁道科学研究院集团有限公司研究员, 主要从事铁路工程材料应用基础研究相关工作。yizhonglai@rails.cn   
引用本文:    
易忠来, 纪文骁, 李化建, 杨志强, 温浩, 王振. 混凝土稳健性评价方法及提升措施研究进展[J]. 材料导报, 2025, 39(6): 24020022-12.
YI Zhonglai, JI Wenxiao, LI Huajian, YANG Zhiqiang, WEN Hao, WANG Zhen. Research Progress on Evaluation Methods and Improvement Measures for the Robustness of Concrete. Materials Reports, 2025, 39(6): 24020022-12.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24020022  或          https://www.mater-rep.com/CN/Y2025/V39/I6/24020022
1 Nunes S, Figueiras H, Milheiro O P, et al. Cement and Concrete Research, 2006, 36(12), 2115.
2 Van Der Vurst F, De Schutter G. In:Third International Symposium on Design, Performance and Use of Self-Consolidating Concrete. Xiamen, China, 2014.
3 Shen L, Jovein H B, Shen S, et al. Journal of Materials in Civil Engineering, 2015, 27(5), 04014159.
4 González-Taboada I, González-Fonteboa B, Martínez-Abella F, et al. Construction and Building Materials, 2018, 176, 720.
5 Kwan A K H, Ng I Y T. Construction and Building Materials, 2010, 24(11), 2260.
6 Shen L, Struble L, Lange D. In:Proceedings of the 2nd North American Conference on the Design and Use of SCC. Quebec, Canada, 2005.
7 Assaad J, Khayat K H, Daczko J. Materials Journal, 2004, 101(3), 207.
8 Khayat K H, Assaad J, Daczko J. Materials Journal, 2004, 101(2), 168.
9 Luis A M. Implementation of self-consolidating concrete (SCC) for prestressed concrete girders. Master's Thesis, Graduate Faculty of North Carolina State University, Releigh, North Carolina, 2004.
10 Bibm, Ermco, Efnarc, et al. The European Guidelines for Self-compacting Concrete, 2005, 22, 563.
11 Bonen D, Deshpande Y, Olek J, et al. In:Proceedings of the Fifth International RILEM Symposium on Self-Compacting concrete.Stockholm, Sweden, 2007, pp.33.
12 Amini K, Mehdipour I, Hwang S D, et al. Construction and Building Materials, 2016, 112, 654.
13 Erdem T K, Bilgiç E, Kanpara C Z. Construction and Building Materials, 2019, 229, 116849.
14 Zuo W Q. Investigation of Robustness and Shrinkage of Self-compacting Concrete. Ph. D. Thesis, Southeast University, China, 2018 (in Chinese).
左文强. 自密实混凝土鲁棒性与收缩性能研究. 博士学位论文, 东南大学, 2018.
15 Asghari A A, Ley Hernandez A M, Feys D, et al. Construction and Building Materials, 2016, 124, 95.
16 Van Der Vurst F, Grünewald S, Feys D, et al. Cement and Concrete Composites, 2017, 82, 190.
17 Kwan A K H, Ling S K. Construction and Building Materials, 2017, 153, 875.
18 Naji S, Hwang S D, Khayat K. ACI Materials Journal, 2011, 108, 432.
19 Schmidt W. Design concepts for the robustness improvement of self-compacting concrete, TU/e. Ph.D. Thesis, Eindhoven University of Technology, Netherlands, 2014.
20 Yu L S, Xie Q Q, Zhou G Q, et al. Railway Construction Technology, 2019(6), 59.
于连山, 谢清泉, 周官强, 等. 铁道建筑技术, 2019(6), 59.
21 Banfill P F G. Construction and Building Materials, 2011, 25(6), 2955.
22 Ortiz J, Aguado A, Agulló L, et al. Construction and Building Materials, 2009, 23(5), 1808.
23 Libre N A, Khoshnazar R, Shekarchi M. Construction and Building Materials, 2010, 24(7), 1262.
24 China Civil Engineering Society. Guide to design and construction of self-compacting concrete:CCES 02-2004, China Construction Industry Press, China, 2004(in Chinese).
中国土木工程学会. 自密实混凝土设计与施工指南:CCES 02-2004, 中国建筑工业出版社, 2004.
25 China Railway Corporation. Specification of self-compacting concrete for high-speed railway CRTS III slab ballastless track:Q/CR 596-2017, China Railway Press, China, 2017(in Chinese).
中国铁路总公司. 高速铁路CRTS III型板式无砟轨道自密实混凝土:Q/CR 596-2017, 中国铁道出版社, 2017.
26 Ministry of Housing and Urban-rural Development of the People's Republic of China. Technical specification for application of self-compacting concrete:JGJ/T 283-2012, China Construction Industry Press, China, 2012 (in Chinese).
中华人民共和国住房和城乡建设部. 自密实混凝土应用技术规程:JGJ/T 283-2012, 中国建筑工业出版社. 2012.
27 Li H J. Self-compacting concrete technology for high-speed railways, Chemical Industry Press, China, 2018(in Chinese).
李化建. 高速铁路自密实混凝土技术, 化学工业出版社, 2018.
28 Kwan A K H, Ng I Y T. Construction and Building Materials, 2010, 24(11), 2260.
29 Shen L, Jovein H B, Wang Q. Journal of Materials in Civil Engineering, 2016, 28(1), 04015067.
30 Liu J Y. Study on automatic online measurement of moisture content of fine aggregate and its effect on concrete properties. Ph. D. Thesis, Wuhan University of Technology, China, 2020(in Chinese).
刘俊岩. 全自动在线测量细骨料含水率及其对混凝土性能影响的研究. 博士学位论文, 武汉理工大学, 2020.
31 Felekolu B, Türkel S, Baradan B. Building and Environment, 2007, 42(4), 1795.
32 Lu Z, Feng Z G, Yao D D, et al. Material Reports, 2020, 34(S1), 203 (in Chinese).
卢喆, 冯振刚, 姚冬冬, 等. 材料导报, 2020, 34(S1), 203.
33 Sun X Y, Chen L, Wang H L, et al. Material Reports, 2022, 36(4), 84 (in Chinese).
孙晓燕, 陈龙, 王海龙, 等. 材料导报, 2022, 36(4), 84.
34 Mardani-Aghabaglou A, Kankal M, Nacar S, et al. Neural Computing and Applications, 2021, 33(19), 12805.
35 Chandra S, Björnström J. Cement and Concrete Research, 2002, 32(10), 1613.
36 Qu Y Z. Effect of cement fineness and content of alkali and sulfur of cement on the development of concrete strength. Master's Thesis, Chongqing University, China, 2013(in Chinese).
曲艳召. 水泥细度与碱硫含量对混凝土强度发展的影响. 硕士学位论文, 重庆大学, 2013.
37 Bonen D, Sarkar S L. Cement and Concrete Research, 1995, 25(7), 1423.
38 Chen J J, Kwan A K H. Cement and Concrete Composites, 2012, 34(1), 1.
39 Vuk T, Tinta V, Gabrovšek R, et al. Cement and Concrete Research, 2001, 31(1), 135.
40 Aydin S, Hilmi A A, Ramyar K. Construction and Building Materials, 2009, 23(6), 2402.
41 Hanehara S, Yamada K. Cement and Concrete Research, 1999, 29(8), 1159.
42 Termkhajornkit P, Barbarulo R. Cement and Concrete Research, 2012, 42(3), 526.
43 Uchikawa H, Hanehara S, Sawaki D. Cement and Concrete Research, 1997, 27(1), 37.
44 Vikan H, Justnes H, Winnefeld F, et al. Cement and Concrete Research, 2007, 37(11), 1502.
45 Ma K L, Long G C, Xie Y J, et al. Journal of the Chinese Ceramic Society, 2013, 41(5), 582(in Chinese).
马昆林, 龙广成, 谢友均, 等. 硅酸盐学报, 2013, 41(5), 582.
46 Hassan A A A, Lachemi M, Hossain K M A. Cement and Concrete Composites, 2012, 34(6), 801.
47 Puthipad N, Ouchi M, Rath S, et al. Construction and Building Materials, 2016, 128, 349.
48 Zhang J Y, Shen X D. Materials Reports, 2014, 28(4), 140 (in Chinese).
张佳阳, 申向东. 材料导报, 2014, 28(4), 140.
49 Zhang Y, Zhao Q X, Li H J, et al. Journal of the Chinese Ceramic Society, 2016, 44(2), 261 (in Chinese).
张勇, 赵庆新, 李化建, 等.硅酸盐学报, 2016, 44(2), 261.
50 Saleh A R, Kemal E T, Ramyar K. Construction and Building Materials, 2015, 75, 89.
51 Tsivilis S, Chaniotakis E, Kakali G, et al. Cement and Concrete Composites, 2002, 24(3-4), 371.
52 Tian H Z, Qiao H X, Feng Q, et al. Materials Reports, 2024, 38(6), 22050194(in Chinese).
田浩正, 乔宏霞, 冯琼, 等. 材料导报, 2024, 38(6), 22050194.
53 Zhang Q Q, Liu J Z, Zhang L H, et al. Materials Reports, 2020, 34(22), 22054 (in Chinese).
张倩倩, 刘建忠, 张丽辉, 等. 材料导报, 2020, 34(22), 22054.
54 Wan H W, Tang C G, Zhang Y. Journal of Wuhan University of Technology, 2007(12), 11 (in Chinese).
万惠文, 唐春刚, 张瑜. 武汉理工大学学报, 2007(12), 11.
55 Yang H, Che Y, Shi M. Journal of Building Engineering, 2021, 44, 102976.
56 Marzouki A, Lecomte A, Beddey A, et al. Construction and Building Materials, 2013, 48, 1145.
57 Jiao D, Shi C, Yuan Q, et al. Cement and Concrete Composites, 2017, 83, 146.
58 Kwan A K H, Fung W W S, Wong H H C. Advances in Cement Research, 2010, 22(1), 3.
59 Kwan A K H, Wong H H C. Advances in Cement Research, 2008, 20(1), 1.
60 Westerholm M, Lagerblad B, Silfwerbrand J, et al. Cement and Concrete Composites, 2008, 30(4), 274.
61 Hu J, Wang K J. Construction and Building Materials, 2011, 25(3), 1196.
62 Zuo W Q, Wei L, Du Z, et al. Construction and Building Materials, 2021, 301, 124063.
63 Li L G, Kwan A K H. Cement and Concrete Composites, 2013, 39, 33
64 De Schutter G, Poppe A M. Construction and Building Materials, 2004, 18(7), 517.
65 Kwan A K H, Ng I Y T. Magazine of Concrete Research, 2009, 61(4), 281.
66 Hu J, Wang K J. Journal of Advanced Concrete Technology, 2007, 5(1), 7.
67 Banfill P F G. Construction and Building Materials, 1994, 8(1), 43.
68 Aïssoun B M. Materials and Structures, 2016, 49, 597.
69 Li T, Nogueira R, De Brito J, et al. Journal of Building Engineering, 2023, 63, 105450.
70 China National Railway Group Co. , Ltd. Manufactured sand for railway concrete:Q/CR 865-2022, China Railway Press, China, 2017(in Chinese)
中国国家铁路集团有限公司. 铁路混凝土用机制砂:Q/CR 865-2022, 中国铁道出版社, 2017.
71 Cortes D D, Kim H K, Palomino A M, et al. Cement and Concrete Research, 2008, 38(10), 1142.
72 Lu G, Wang K, Rudolphi T J. Cement and Concrete Composites, 2008, 30(1), 1.
73 Jamkar S S, Rao C B K. Cement and Concrete Research, 2004, 34(11), 2021.
74 Krejsová J, Doleželová M, Pernicová R, et al. Cement and Concrete Composites, 2018, 92, 188.
75 Gołaszewski J, Szwabowski J. Cement and Concrete Research, 2004, 34(2), 235.
76 Silva B A, Ferreira P A P, Gomes A, et al. Journal of Building Engineering, 2020, 31, 101132.
77 Paiva H, Silva L M, Labrincha J A, et al. Cement and Concrete Research, 2006, 36(7), 1257.
78 Perrot A, Lecompte T, Kheli H. Cement and Concrete Research, 2012, 42(7), 937.
79 Björnström J, Chandra S. Materials and Structures, 2003, 36, 685.
80 Pereira P. Construction and Building Materials, 2012, 28(1), 722.
81 Billberg P, Westerholm M. NCR Journal, 2008, 38(7), 103.
82 State Administration for Market Regulation, Standardization Administration of China. Technical specification for high performance concrete:GB/T 41054-2021, China Quality Inspection Press, China, 2021(in Chinese).
国家市场监督管理总局, 国家标准化管理委员会. 高性能混凝土技术条件:GB/T 41054-2021, 中国质检出版社, 2021.
83 Sampebulu V. ITB Journal of Engineering Science, 2012, 44(1), 21.
84 Petit J Y, Khayat K H, Wirquin E. Cement and Concrete Research, 2006, 36(5), 832.
85 Rejeb S K. Cement and Concrete Research, 1996, 26(4), 58.
86 Chiocchio G, Paolini A E. Cement and Concrete Research, 1985, 15(5), 901.
87 Aiad I. Cement and Concrete Research, 2003, 33(8), 1229.
88 Chopin D, De Larrard F, Cazacliu B. Cement and Concrete Research, 2004, 34(12), 2237.
89 Schießl P, Mazanec O, Lowke D. SCC and UHPC— effect of mixing technology on fresh concrete properties, Advances in Construction Materials, 2007.
90 Lowke D, Schiessl P. In:Proceedings of the 4th International RILEM Symposium on Self-compacting Concrete. Chicago, USA. 2005.
91 Hemalatha T, Ram S K R, Murthy A R, et al. Construction and Building Materials, 2015, 98, 119.
92 Bui V K, Montgomery D, Hinczak I, et al. Cement and Concrete Research, 2002, 32(9), 1489.
93 Shen L. Role of aggregate packing in segregation resistance and flow behavior of self-consolidating concrete. Ph. D. Thesis, University of Illinois, 2007.
94 Hou S, Duan Z, Xiao J, et al. Journal of Building Engineering, 2021, 35, 102075.
95 Tang X S, Cai Y B, Wen J B, et al. Journal of Chinese Ceramic Society, 2014, 42(5), 648(in Chinese).
唐修生, 蔡跃波, 温金保, 等. 硅酸盐学报, 2014, 42(5), 648.
96 Wallevik J E. Cement and Concrete Research, 2006, 36(7), 1214.
97 Huang F L, Li H J, Yi Z L, et al. Railway Engineering, 2017(1), 61(in Chinese).
黄法礼, 李化建, 易忠来, 等. 铁道建筑, 2017(1), 61.
98 Ghoddousi P, Salehi A M. International Journal of Civil Engineering, 2017, 15(8), 1097.
99 Wallevik O H. Cement and Concrete Research, 2011, 41(12), 1279.
100 Zuo W Q, Bessaies-Bey H, Tian Q, et al. Cement and Concrete Research, 2021, 139, 106260.
101 Yu C X, Qu D J, Liu J Y, et al. Concrete, 2021(1), 153(in Chinese).
余成行, 曲东杰, 刘敬宇, 等. 混凝土, 2021(1), 153.
102 Güneyisi E, Gesoglu M, üzbay E. ACI Materials Journal, 2011, 108(2), 150.
103 Liu Y, Li M Y, Yan P Y. Journal of the Chinese Ceramic Society, 2019, 47(5), 594.
刘宇, 黎梦圆, 阎培渝. 硅酸盐学报, 2019, 47(5), 594.
104 Esmaeilkhanian B, Khayat K H, Yahia A, et al. Cement and Concrete Composites, 2014, 54, 21.
105 Paiva H, Velosa A, Cachim P, et al. Cement and Concrete Research, 2012, 42(4), 607.
106 Plank J, Winter C. Cement and Concrete Research, 2008, 38(5), 599.
107 Hot J, Bessaies-Bey H, Brumaud C, et al. Cement and Concrete Research, 2014, 63, 12.
108 Lachemi M, Hossain K M A, Lambros V, et al. Cement and Concrete Research, 2004, 34(2), 185.
109 Hot J, Bessaies-Bey H, Brumaud C, et al. Cement and Concrete Research, 2014, 63, 12.
110 Zhang Y, Zhao Q, Liu C, et al. Construction and Building Materials, 2016, 102, 648.
111 Leemann A, Winnefeld F. Cement and Concrete Composites, 2007, 29(5), 341.
112 Xu W, Liu Y, Liu J Z, et al. Concrete, 2016(1), 153 (in Chinese).
徐文, 杨勇, 刘金枝, 等. 混凝土, 2016(1), 153.
[1] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[2] 徐俊, 康爱红, 吴正光, 龚泳帆, 寇长江, 吴帮伟, 张垚, 肖鹏. 高性能再生微粉基地聚合物注浆料的活化制备及性能研究[J]. 材料导报, 2024, 38(22): 24060235-6.
[3] 杨尊, 李碧雄, 张治博, 李梁慧. 高钛矿渣在水泥混凝土中的研究应用进展[J]. 材料导报, 2024, 38(18): 22120226-9.
[4] 陈嘉伟, 张芸侨, 陈卓凡, 刘智, 李军, 卢忠远, 赖振宇. Mg(OH)2对磷酸镁水泥水化过程及性能的影响[J]. 材料导报, 2024, 38(17): 24010085-7.
[5] 李北星, 陈鹏博, 殷实, 易浩. 附加用水量对再生砂混凝土工作性和力学性能的影响[J]. 材料导报, 2024, 38(1): 22070217-7.
[6] 赵毅, 王佳, 周娇, 王梦雨, 杨臻. 水泥基超疏水材料自清洁技术研究进展[J]. 材料导报, 2023, 37(6): 21100243-17.
[7] 温家馨, 李化建, 杨志强, 李子春, 黄法礼, 王振, 易忠来, 谢永江. 高速铁路无砟轨道混凝土动态性能及其评价方法综述[J]. 材料导报, 2023, 37(20): 22010181-10.
[8] 马昆林, 刘建, 申景涛, 胡明文, 王晓杰, 龙广成, 曾晓辉. 砖混再生粗骨料及其在混凝土中的研究与应用进展[J]. 材料导报, 2023, 37(18): 22010215-12.
[9] 丁聪, 任金明, 王永明, 李新宇, 俞兵, 郭丽萍. 高延性水泥基复合材料用短切PVA纤维的长度优选研究[J]. 材料导报, 2023, 37(13): 21080025-8.
[10] 李京军, 谭德林, 牛建刚. 砂浆流变参数的Marsh筒法和微坍法测定[J]. 材料导报, 2022, 36(9): 21010230-7.
[11] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[12] 孙晓燕, 陈龙, 王海龙, 张静. 面向水下智能建造的3D打印混凝土配合比优化研究[J]. 材料导报, 2022, 36(4): 21050230-9.
[13] 伍勇华, 李莹, 党梓轩, 何娟, 齐昭栋. 利用坍落扩展试验表征水泥基材料流变参数研究进展[J]. 材料导报, 2022, 36(16): 21010120-5.
[14] 李书进, 刘源涛, 厉见芬, 盛炎民. 盾构废弃泥沙再生制备高性能注浆材料的试验研究[J]. 材料导报, 2021, 35(z2): 275-278.
[15] 孙茹茹, 王振, 黄法礼, 易忠来, 袁政成, 谢永江, 李化建. 不同岩性石粉-水泥复合胶凝材料性能研究[J]. 材料导报, 2021, 35(Z1): 211-215.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed