Please wait a minute...
材料导报  2023, Vol. 37 Issue (18): 22010215-12    https://doi.org/10.11896/cldb.22010215
  无机非金属及其复合材料 |
砖混再生粗骨料及其在混凝土中的研究与应用进展
马昆林1,*, 刘建1, 申景涛2, 胡明文2, 王晓杰2, 龙广成1, 曾晓辉1
1 中南大学土木工程学院,长沙 410075
2 中铁城建集团有限公司, 长沙 410208
Research and Application Progress of Mixed Recycled Coarse Aggregate and Its Application in Concrete
MA Kunlin1,*, LIU Jian1, SHEN Jingtao2, HU Mingwen2, WANG Xiaojie2, LONG Guangcheng1, ZENG Xiaohui1
1 School of Civil Engineering, Central South University, Changsha 410075, China
2 China Railway Urban Construction Group Co., Ltd, Changsha 410208, China
下载:  全 文 ( PDF ) ( 23035KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着我国城市化进程的加速以及人们居住水平的不断改善,20世纪60年代至80年代建设的大量砖混结构建筑物面临拆除,这些砖混结构物拆除后经破碎加工而成的粗骨料中含有大量碎砖、碎瓦和低强度的混凝土,简称砖混再生粗骨料(Mixed recycled coarse aggregate,MRCA)。MRCA的高值利用是建筑固废资源化利用的研究热点。
   MRCA具有吸水性高、压碎指标高、空隙率高以及密度低“三高一低”的物理特性。MRCA具有较大的棱角度、表面粗糙度和分形维数,较小的圆度等颗粒形态特征。MRCA混凝土破坏主要由低强度的碎砖骨料破坏及再生粗骨料与水泥砂浆界面过渡区粘结破坏导致。采用物理和化学方法对MRCA进行强化,并通过适合的配合比设计方法和制备技术可以改善MRCA混凝土性能。再生砖骨料占比是影响MRCA混凝土工作性能、力学强度及耐久性的重要参数之一。相关学者研究了再生砖骨料含量对MRCA混凝土工作性能、力学强度及耐久性能的影响规律,并基于应力应变关系和再生砖骨料的含量提出了MRCA混凝土损伤本构关系模型,探讨了MRCA混凝土的损伤演变规律。另一些学者测试了MRCA混凝土制备的梁、板和柱等构件的受力性能和服役安全性能,探讨了MRCA混凝土应用于实际工程结构的可行性。
   本文基于已有文献资料,对MRCA的物理力学特性、分级分类、骨料强化以及MRCA混凝土在配合比设计、工作性能、力学强度、耐久性能及构件性能等方面进行了综合评述,分析了目前MRCA研究存在的问题并展望其应用前景,以期为MRCA的进一步利用提供研究基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马昆林
刘建
申景涛
胡明文
王晓杰
龙广成
曾晓辉
关键词:  建筑垃圾  砖混再生粗骨料  骨料分级  工作性能  力学强度    
Abstract: With the acceleration of Chinese urbanization process and the continuous development of living standards, a large number of brick-concrete buildings constructed from 1960s to 1980s are facing demolition. These brick-concrete structures are crushed and processed into coarse aggregates containing a large number of broken bricks, tiles and low-strength concrete, referred to as mixed recycled coarse aggregate (MRCA). The high-value application of MRCA is a research hotspot for the utilization of construction solid waste.
MRCA has the physical properties of high water absorption, high crushing index, high voidage, and low density. Also, it owns a large angularity, surface roughness and fractal dimension, and a small roundness and other particle morphology characteristics. The damage of MRCA concrete is mainly caused by the failure of low-strength broken brick aggregate and the bond failure of the interface transition zone between recycled coarse aggregate and cement mortar. MRCA can be strengthened by physical and chemical methods, and the properties of MRCA concrete can be improved by appropriate mix design methods and preparation techniques. The proportion of recycled brick aggregate is one of the most important parameters affecting the workability, mechanical strength and durability of MRCA concrete. Researchers studied the influence of recycled brick aggregate content on workability, mechanical strength and durability of MRCA concrete. They proposed a damage constitutive model for MRCA concrete based on the stress-strain relationship and recycled brick aggregate content, and analyzed the damage evolution of MRCA concrete. Other researchers tested the mechanical properties and service safety performance of MRCA concrete beams, slabs and columns, and discussed the feasibility of applying MRCA concrete to actual engineering structures.
Based on the literature, this paper presents a comprehensive review of the physical and mechanical properties, classification and aggregate reinforcement for MRCA and MRCA concrete in terms of mixture design, workability, mechanical strength, durability, and member performance. Besides, the current problems and application prospects of MRCA research are analyzed, with a view to laying a research foundation for the further use of MRCA.
Key words:  construction waste    mixed recycled coarse aggregate    aggregate classification    workability    mechanical strength
出版日期:  2023-09-25      发布日期:  2023-09-18
ZTFLH:  TU528  
基金资助: 长沙市科技计划重大专项(kh2005213); 中南大学深化创新创业教育改革项目(2020CG040)
通讯作者:  *马昆林,中南大学土木工程学院教授。主要从事海绵城市、路面结构设计及损伤理论、固废资源化利用、高性能混凝土技术和高速铁路无砟轨道方面的研究和工程应用。近年来主持和参加包括国家自然科学基金重大项目、高铁联合基金、“973”和科技部重点研发在内的纵横向科研项目30余项,发表学术论文100余篇,获省部级以上科研奖励6项,获专利授权10项,主编教材4部,出版专著2部,作为主要起草人编制规范4部。makunlin@ csu.edu.cn   
引用本文:    
马昆林, 刘建, 申景涛, 胡明文, 王晓杰, 龙广成, 曾晓辉. 砖混再生粗骨料及其在混凝土中的研究与应用进展[J]. 材料导报, 2023, 37(18): 22010215-12.
MA Kunlin, LIU Jian, SHEN Jingtao, HU Mingwen, WANG Xiaojie, LONG Guangcheng, ZENG Xiaohui. Research and Application Progress of Mixed Recycled Coarse Aggregate and Its Application in Concrete. Materials Reports, 2023, 37(18): 22010215-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010215  或          http://www.mater-rep.com/CN/Y2023/V37/I18/22010215
1 Lu W, Chi B, Bao Z, et al. Building and Environment, 2019, 155, 247.
2 Fan W C, Xiao J, Tian Z, et al. Bulletin of the Chinese Ceramic Society, 2017, 36(S1), 158.
3 Zhou W J, Zhang Z W, Xu Y B. Materials Reports, 2020, 34(S1), 234 (in Chinese).
周文娟, 张志伟, 徐玉波. 材料导报, 2020, 34(S1), 234.
4 Luo X, Liu G, Zhang Y, et al. Construction and Building Materials, 2021, 283(8), 122107.
5 Chen S J, Zhai A L, Ji C L, et al. Journal of Water Resources and Water, 2013, 24(3), 96 (in Chinese).
陈树建,翟爱良,季昌良,等.水资源与水工程学报,2013, 24(3), 96.
6 Wang S L, Jing L P, Zhang B, et al. Concrete, 2011(2), 83 (in Chinese).
王社良,景龙平,张博,等.混凝土, 2011(2), 83.
7 Zhang Z W. Experimental research on recycled materials of brick and concrete construction waste for road. Master's Thesis, Beijing University of Civil Engineering and Architecture,China, 2020 (in Chinese).
张志伟. 道路用砖混类建筑垃圾再生材料试验研究. 硕士学位论文, 北京建筑大学, 2020.
8 Zeng M L, Tian Z, Xiao J, et al. Journal of Wuhan University of Techno-logy, 2016, 38(1), 34 (in Chinese).
曾梦澜,田振,肖杰,等.武汉理工大学学报,2016, 38(1), 34.
9 Xiao J, Wu C F, Zhan Z H, et al. China Journal of Highway and Transport, 2017, 30(2), 25.
10 Zhao L D. Study on typical pavement structure and road performance of brick-concrete recycled aggregate used in base. Master's Thesis, Chongqing Jiaotong University, China, 2018 (in Chinese).
赵连地. 水泥稳定砖混类再生骨料基层沥青路面结构及路用性能研究. 硕士学位论文, 重庆交通大学, 2018.
11 Luo S R, Zheng X, Huang H S. Journal of Building Materials, 2016, 19(2), 242 (in Chinese).
罗素蓉,郑欣,黄海生.建筑材料学报,2016, 19(2), 242.
12 Xu K D,Wang J N, Li Z X, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(9), 2905 (in Chinese).
徐开东, 王继娜, 李志新, 等. 硅酸盐通报, 2020, 39(9), 2905.
13 Tao H Y, Chen P, Gong Y F, et al. Bulletin of the Chinese Ceramic So-ciety, 2021, 40(3), 957 (in Chinese).
陶航宇, 陈萍, 龚亦凡, 等. 硅酸盐通报, 2021, 40(3), 957.
14 Li P F. The expermental research on regeneration aggregate and proportion of recycled concrete brick. Master's Thesis, Changsha University of Science & Technology, China, 2011 (in Chinese).
李鹏飞. 再生混凝土多孔砖用骨料及配合比试验研究. 硕士学位论文, 长沙理工大学, 2011.
15 Yuan C F, Li S, Zeng L, et al. Concerte, 2018(3), 98 (in Chinese).
元成方, 李爽, 曾力, 等. 混凝土, 2018(3), 98.
16 Yang X F, Huang J F, Dai D W, et al. Bulletin of the Chinese Ceramic Society, 2021, 40(8), 2659 (in Chinese).
杨秀芬, 黄佳富, 戴大旺,等. 硅酸盐通报, 2021, 40(8), 2659.
17 Ma K L, Huang X L, Sheng J T, et al. Journal of Building Engineering, 2021, 44, 103292.
18 He Z M, Shen A Q, Wang W Z, et al. Journal of Adhesion Science and Technology, 2021, 36(10), 1060.
19 Liu X, Wu J, Yan P P, et al. Journal of Materials in Civil Engineering, 2021, 33(5), 0402108.
20 González J S, Gayarre F L, Pérez C L C, et al. Construction and Building Materials, 2017, 149, 507.
21 Wang R, Yu N, Li Y. Construction and Building Materials, 2020, 242, 118.
22 Sun K Q. The influence of strength by sock the mixture recycled aggregate in the cement silicate solution. Master's Thesis, Anhui University of Science and Technology, China, 2019 (in Chinese).
孙克庆. 水玻璃浸泡对混合再生混凝土的强度影响. 硕士学位论文, 安徽理工大学, 2019.
23 Wu B Y. Mechanical properties and permeability of recycled brick-concrete aggregate pervious concrete. Master's Thesis, Zhejiang University, China, 2020 (in Chinese).
吴珀宇. 再生砖混透水混凝土的力学性能及其透水相关性研究. 硕士学位论文, 浙江大学, 2020.
24 Huang W, Ge P, Li M, et al. Materials Reports, 2021, 35(19), 19022 (in Chinese).
黄炜, 葛培, 李萌, 等. 材料导报, 2021, 35(19), 19022.
25 Gao Q, Liu Y, Li F A, et al. Chinese and Overseas Architecture, 2018(12), 160 (in Chinese).
高琦, 柳炎, 李福安, 等.中外建筑, 2018 (12), 160.
26 Jian Y, Qiang D, Bao Y. Construction and Building Materials, 2011, 25(4), 1935.
27 Ma K L, Huang X Y, Hu M W, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(8), 2600 (in Chinese).
马昆林, 黄新宇, 胡明文, 等. 硅酸盐通报, 2020, 39(8), 2600.
28 Liu X, Wu J, Zhao X, et al. Construction and Building Materials, 2021, 292(5), 123320.
29 Hou S D, Duan Z H, Xiao J Z, et al. Journal of Building Engineering, 2021, 35, 102075.
30 Rodríguez-Robles D, García-González K, Juan-Valdés A, et al. Magazine of Concrete Research, 2015, 67(5), 247.
31 Zheng C C, Lou C, Du G, et al. Results in Physics, 2018, 9, 1317.
32 Yeong-Nain Sheen, Her-Yung Wang, Yi-Ping Juang, et al. Construction and Building Materials, 2013, 45(8), 298.
33 Yuan C F, Li S, Zeng L, et al. Bulletin of the Chinese Ceramic Society, 2018, 37(2), 398 (in Chinese).
元成方, 李爽, 曾力, 等. 硅酸盐通报, 2018, 37(2), 398.
34 Chen F, Wu K, Nan Y, et al. Sichuan Building Science, 2016, 42(4), 93 (in Chinese).
陈峰, 伍凯, 南洋, 等. 四川建筑科学研究, 2016, 42(4), 93.
35 Chen J, Gen Y, Wang Y Y, et al. Journal of Building Structures, 2020, 41(12), 184 (in Chinese).
陈杰, 耿悦, 王玉银, 等. 建筑结构学报, 2020, 41(12), 184.
36 Zhang X M, Liu X, Bai B, et al. Bulletin of the Chinese Ceramic Society, 2021, 40(8), 2680 (in Chinese).
张献蒙, 刘旭, 柏彬, 等. 硅酸盐通报, 2021, 40(8), 2680.
37 Chen F, Wu K, Ren L, et al. Materials, 2019, 12(11), 1815.
38 Yuan C F, Wei Y R, Li S. Journal of Zhengzhou University(Engineering Science), 2021, 42(2), 49 (in Chinese).
元成方, 魏逸然, 李爽. 郑州大学学报(工学版), 2021, 42(2), 49.
39 Ji W Y. Experimental research on mechanical properties and durability of mixed recycled coarse aggregate concrete. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2020 (in Chinese).
冀韦伊. 混合型再生粗骨料混凝土力学性能与耐久性能试验研究. 硕士学位论文, 南京航空航天大学, 2020.
40 Chen C. Experimental study on the performance of fiber recycled brick aggregate concrete. Master's Thesis, Liaoning University of Technology, China, 2016 (in Chinese).
陈晨. 纤维砖骨料再生混凝土性能试验研究. 硕士学位论文, 辽宁工业大学, 2016.
41 Yu Y, Wang J, Wang N,et al. Materials, 2021, 14(23), 7267.
42 Yang C, Huang L, Zeng L H, et al. Concrete, 2020(1), 60 (in Chinese).
杨聪, 黄靓, 曾令宏, 等. 混凝土, 2020(1), 60.
43 Ma K L, Huang X Y, Hu M W, et al. Journal of Building Materials, 2022, 25(2), 131 (in Chinese).
马昆林, 黄新宇, 胡明文, 等. 建筑材料学报, 2022, 25(2), 131.
44 Guo L X, Zhong L, Zheng C Y, et al. Journal of Basic Science and Engineering, 2019, 27(6), 1390 (in Chinese).
郭利霞, 钟凌, 郑璀莹, 等. 应用基础与工程科学学报, 2019, 27(6), 1390.
45 Cao W L, Gong X X, Ye T P, et al. Journal of Natural Disasters, 2017, 26(4), 10 (in Chinese).
曹万林, 巩晓雪, 叶涛萍, 等. 自然灾害学报, 2017, 26(4), 10.
46 Seara-Paz, Sindy, Gonzalez-Fonteboa, et al. Engineering Structures, 2018, 156, 32.
47 Cai M, Ke X, Su Y. Engineering Structures, 2020, 210, 110393.1.
48 Wang S L, Yang T, Li T. Industrial Construction, 2013, 43(11), 26 (in Chinese).
王社良, 杨涛, 李涛. 工业建筑, 2013, 43(11), 26.
49 Wang Y Z, Zhao Y X, Zhao Y, et al. Journal of Building Structures, 2020, 041(3), 53 (in Chinese).
汪裕洲, 赵羽习, 赵云, 等. 建筑结构学报, 2020, 041(3), 53.
50 Sun Y L Q, Zhao Y X, Meng T, et al. Journal of Building Structures. 2021, 42(S1), 312 (in Chinese).
孙一李全, 赵羽习, 孟涛, 等. 建筑结构学报, 2021, 42(S1), 312.
51 An X Z, Ma X N, Shen Y L. Science Technology and Engineering, 2020, 20(14), 5751 (in Chinese).
安新正, 马晓楠, 申彦利. 科学技术与工程, 2020, 20(14), 5751.
52 Huang L, Lin M M, Gao C, et al. Journal of Railway Science and Engineering, 2020, 17(3), 699 (in Chinese).
黄靓, 林明明, 高畅, 等. 铁道科学与工程学报, 2020, 17(3), 699.
53 Sun Y L Q, Zhao Y X, Meng T, et al. Journal of Zhejiang University(Engineering Science),2021, 55(6), 1090 (in Chinese).
孙一李全, 赵羽习, 孟涛, 等. 浙江大学学报(工学版), 2021, 55(6), 1090.
54 Chen J, Zhang S, Wang Y, et al. Structures, 2020, 26, 271.
55 Sun Y L Q. Study on mechanncial performance of recycled aggregate concrete components containing waste concrete and bricks. Master's Thesis, Zhejiang University, China, 2021 (in Chinese).
孙一李全. 再生砖混骨料混凝土构件力学性能研究. 硕士学位论文, 浙江大学, 2021.
56 Yan B, Huang L, Yan L, et al. Construction and Building Materials, 2017, 136, 265.
57 Gao C, Huang L, Yan L, et al. Composites, 2019, 162, 178.
58 Huang L, Chen L, Yan L, et al. Construction and Building Materials, 2017, 154, 123.
[1] 丁聪, 任金明, 王永明, 李新宇, 俞兵, 郭丽萍. 高延性水泥基复合材料用短切PVA纤维的长度优选研究[J]. 材料导报, 2023, 37(13): 21080025-8.
[2] 刘超, 王有强, 刘化威, 张荣飞. 基于打印参数影响的3D打印混凝土力学性能试验研究[J]. 材料导报, 2023, 37(1): 21110276-7.
[3] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[4] 孙晓燕, 陈龙, 王海龙, 张静. 面向水下智能建造的3D打印混凝土配合比优化研究[J]. 材料导报, 2022, 36(4): 21050230-9.
[5] 冯春花, 黄益宏, 崔卜文, 朱建平, 李东旭, 郭晖. 建筑再生骨料强化方法研究进展[J]. 材料导报, 2022, 36(21): 20080099-8.
[6] 李书进, 刘源涛, 厉见芬, 盛炎民. 盾构废弃泥沙再生制备高性能注浆材料的试验研究[J]. 材料导报, 2021, 35(z2): 275-278.
[7] 孙茹茹, 王振, 黄法礼, 易忠来, 袁政成, 谢永江, 李化建. 不同岩性石粉-水泥复合胶凝材料性能研究[J]. 材料导报, 2021, 35(Z1): 211-215.
[8] 高育欣, 刘明, 曾超, 王福涛, 王鹏, 叶子, 张磊. 机制砂表面改性技术研究与应用[J]. 材料导报, 2021, 35(22): 22072-22078.
[9] 刘超, 余伟航, 刘化威, 胡天峰, 胡慧敏. 再生砖骨料混凝土力学性能及破坏机理研究[J]. 材料导报, 2021, 35(13): 13025-13031.
[10] 赵颖, 刘维胜, 王欢, 顾菲, 车玉君, 杨华山. 石灰石粉对3D打印水泥基材料性能的影响[J]. 材料导报, 2020, 34(Z2): 217-220.
[11] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[12] 庄煜, 郭艳玲, 李健, 姜凯译, 于跃强, 张慧. 仿血管聚氨酯基复合材料的激光烧结工艺研究[J]. 材料导报, 2020, 34(10): 10177-10181.
[13] 苏胜奇, 卢家成, 李嘉鹏, 刘晨辉, 李飞. 再生细骨料对蓄水层渗蓄性能的影响[J]. 材料导报, 2019, 33(Z2): 226-228.
[14] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[15] 王爱国,吕邦成,刘开伟,马 雪,徐海燕,谭京梅. 珊瑚骨料混凝土性能及微结构的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1528-1533.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed